Anti-periodic solutions to a parabolic hemivariational inequality

Jong Yeoul Park; Hyun Min Kim; Sun Hye Park

Kybernetika (2004)

  • Volume: 40, Issue: 4, page [477]-489
  • ISSN: 0023-5954

Abstract

top
In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form b ( u ) , where b L loc ( R ) . Extending b to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.

How to cite

top

Park, Jong Yeoul, Kim, Hyun Min, and Park, Sun Hye. "Anti-periodic solutions to a parabolic hemivariational inequality." Kybernetika 40.4 (2004): [477]-489. <http://eudml.org/doc/33713>.

@article{Park2004,
abstract = {In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form $b(u)$, where $b\in L^\{\infty \}_\{\{\rm loc\}\}(\{R\}).$ Extending $b$ to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.},
author = {Park, Jong Yeoul, Kim, Hyun Min, Park, Sun Hye},
journal = {Kybernetika},
keywords = {hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problems; hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problem},
language = {eng},
number = {4},
pages = {[477]-489},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Anti-periodic solutions to a parabolic hemivariational inequality},
url = {http://eudml.org/doc/33713},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Park, Jong Yeoul
AU - Kim, Hyun Min
AU - Park, Sun Hye
TI - Anti-periodic solutions to a parabolic hemivariational inequality
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 4
SP - [477]
EP - 489
AB - In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form $b(u)$, where $b\in L^{\infty }_{{\rm loc}}({R}).$ Extending $b$ to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.
LA - eng
KW - hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problems; hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problem
UR - http://eudml.org/doc/33713
ER -

References

top
  1. Aizicovici S., Mckibben M., Reich S., 10.1016/S0362-546X(99)00192-3, Nonlinear Anal. 43 (2001), 233–251 Zbl0977.34061MR1790104DOI10.1016/S0362-546X(99)00192-3
  2. Aizicovici S., Pavel N. H., 10.1016/0022-1236(91)90046-8, J. Funct. Anal. 99 (1991), 387–408 (1991) Zbl0743.34067MR1121619DOI10.1016/0022-1236(91)90046-8
  3. Aizicovici S., Reich S., Anti-periodic solutions to a class of non-monotone evolution equations, Discrete Contin. Dynam. Systems. 5 (1999), 35–42 (1999) Zbl0961.34044MR1664469
  4. Barbu V., Nonlinear Semigroups and Differential Equations in Banach Spacess, Noordhoff, Leyden 1976 MR0390843
  5. Miettinen M., 10.1016/0362-546X(94)00312-6, Nonlinear Anal. 26 (1996), 725–734 (1996) Zbl0858.35072MR1362746DOI10.1016/0362-546X(94)00312-6
  6. Miettinen M., Panagiotopoulos P. D., On parabolic hemivariational inequalities and applications, Nonlinear Anal. 35 (1999), 885–915 (1999) Zbl0923.35089MR1664899
  7. Nakao M., 10.1006/jmaa.1996.0465, J. Math. Anal. Appl. 204 (1996), 754–764 (1996) Zbl0873.35051MR1422770DOI10.1006/jmaa.1996.0465
  8. Nakao M., Okochi H., Anti-periodic solutions for u t t - ( σ ( u x ) ) x - u x x t = f ( x , t ) , J. Math. Anal. Appl. 197 (1996), 796–809 (197) MR1373081
  9. Okochi H., 10.2969/jmsj/04030541, J. Math. Soc. Japan 40 (1988), 541–553 (1988) Zbl0679.35046MR0945351DOI10.2969/jmsj/04030541
  10. Panatiotopoulos P. D., Nonconvex superpotentials in the sense of F, H. Clarke and applications. Mech. Res. Comm. 8 (1981), 335–340 (1981) MR0639382
  11. Rauch J., 10.1090/S0002-9939-1977-0442453-6, Proc. Amer. Math. Soc. 64 (1977), 277–282 (1977) Zbl0413.35031MR0442453DOI10.1090/S0002-9939-1977-0442453-6
  12. Showalter R. E., Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys Monographs 49 (1996) (1996) MR1422252

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.