Anti-periodic solutions to a parabolic hemivariational inequality
Jong Yeoul Park; Hyun Min Kim; Sun Hye Park
Kybernetika (2004)
- Volume: 40, Issue: 4, page [477]-489
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPark, Jong Yeoul, Kim, Hyun Min, and Park, Sun Hye. "Anti-periodic solutions to a parabolic hemivariational inequality." Kybernetika 40.4 (2004): [477]-489. <http://eudml.org/doc/33713>.
@article{Park2004,
abstract = {In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form $b(u)$, where $b\in L^\{\infty \}_\{\{\rm loc\}\}(\{R\}).$ Extending $b$ to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.},
author = {Park, Jong Yeoul, Kim, Hyun Min, Park, Sun Hye},
journal = {Kybernetika},
keywords = {hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problems; hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problem},
language = {eng},
number = {4},
pages = {[477]-489},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Anti-periodic solutions to a parabolic hemivariational inequality},
url = {http://eudml.org/doc/33713},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Park, Jong Yeoul
AU - Kim, Hyun Min
AU - Park, Sun Hye
TI - Anti-periodic solutions to a parabolic hemivariational inequality
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 4
SP - [477]
EP - 489
AB - In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form $b(u)$, where $b\in L^{\infty }_{{\rm loc}}({R}).$ Extending $b$ to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.
LA - eng
KW - hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problems; hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problem
UR - http://eudml.org/doc/33713
ER -
References
top- Aizicovici S., Mckibben M., Reich S., 10.1016/S0362-546X(99)00192-3, Nonlinear Anal. 43 (2001), 233–251 Zbl0977.34061MR1790104DOI10.1016/S0362-546X(99)00192-3
- Aizicovici S., Pavel N. H., 10.1016/0022-1236(91)90046-8, J. Funct. Anal. 99 (1991), 387–408 (1991) Zbl0743.34067MR1121619DOI10.1016/0022-1236(91)90046-8
- Aizicovici S., Reich S., Anti-periodic solutions to a class of non-monotone evolution equations, Discrete Contin. Dynam. Systems. 5 (1999), 35–42 (1999) Zbl0961.34044MR1664469
- Barbu V., Nonlinear Semigroups and Differential Equations in Banach Spacess, Noordhoff, Leyden 1976 MR0390843
- Miettinen M., 10.1016/0362-546X(94)00312-6, Nonlinear Anal. 26 (1996), 725–734 (1996) Zbl0858.35072MR1362746DOI10.1016/0362-546X(94)00312-6
- Miettinen M., Panagiotopoulos P. D., On parabolic hemivariational inequalities and applications, Nonlinear Anal. 35 (1999), 885–915 (1999) Zbl0923.35089MR1664899
- Nakao M., 10.1006/jmaa.1996.0465, J. Math. Anal. Appl. 204 (1996), 754–764 (1996) Zbl0873.35051MR1422770DOI10.1006/jmaa.1996.0465
- Nakao M., Okochi H., Anti-periodic solutions for , J. Math. Anal. Appl. 197 (1996), 796–809 (197) MR1373081
- Okochi H., 10.2969/jmsj/04030541, J. Math. Soc. Japan 40 (1988), 541–553 (1988) Zbl0679.35046MR0945351DOI10.2969/jmsj/04030541
- Panatiotopoulos P. D., Nonconvex superpotentials in the sense of F, H. Clarke and applications. Mech. Res. Comm. 8 (1981), 335–340 (1981) MR0639382
- Rauch J., 10.1090/S0002-9939-1977-0442453-6, Proc. Amer. Math. Soc. 64 (1977), 277–282 (1977) Zbl0413.35031MR0442453DOI10.1090/S0002-9939-1977-0442453-6
- Showalter R. E., Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys Monographs 49 (1996) (1996) MR1422252
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.