A modified standard embedding for linear complementarity problems
Sira Allende Allonso; Jürgen Guddat; Dieter Nowack
Kybernetika (2004)
- Volume: 40, Issue: 5, page [551]-570
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topAllonso, Sira Allende, Guddat, Jürgen, and Nowack, Dieter. "A modified standard embedding for linear complementarity problems." Kybernetika 40.5 (2004): [551]-570. <http://eudml.org/doc/33719>.
@article{Allonso2004,
abstract = {We propose a modified standard embedding for solving the linear complementarity problem (LCP). This embedding is a special one-parametric optimization problem $P(t), t \in [0,1]$. Under the conditions (A3) (the Mangasarian–Fromovitz Constraint Qualification is satisfied for the feasible set $M(t)$ depending on the parameter $t$), (A4) ($P(t)$ is Jongen–Jonker– Twilt regular) and two technical assumptions, (A1) and (A2), there exists a path in the set of stationary points connecting the chosen starting point for $P(0)$ with a certain point for $P(1)$ and this point is a solution for the (LCP). This path may include types of singularities, namely points of Type 2 and Type 3 in the class of Jongen–Jonker–Twilt for $t\in [0,1)$. We can follow this path by using pathfollowing procedures (included in the program package PAFO). In case that the condition (A3) is not satisfied, also points of Type 4 and 5 may appear. The assumption (A4) will be justified by a perturbation theorem. Illustrative examples are presented.},
author = {Allonso, Sira Allende, Guddat, Jürgen, Nowack, Dieter},
journal = {Kybernetika},
keywords = {linear complementarity problem; standard embedding; Jongen– Jonker–Twilt regularity; Mangasarian–Fromovitz constraint qualification; pathfollowing methods; linear complementarity problem; Jongen-Jonker-Twilt regularity; Mangasarian-Fromovitz constraint qualification; pathfollowing method},
language = {eng},
number = {5},
pages = {[551]-570},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A modified standard embedding for linear complementarity problems},
url = {http://eudml.org/doc/33719},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Allonso, Sira Allende
AU - Guddat, Jürgen
AU - Nowack, Dieter
TI - A modified standard embedding for linear complementarity problems
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 5
SP - [551]
EP - 570
AB - We propose a modified standard embedding for solving the linear complementarity problem (LCP). This embedding is a special one-parametric optimization problem $P(t), t \in [0,1]$. Under the conditions (A3) (the Mangasarian–Fromovitz Constraint Qualification is satisfied for the feasible set $M(t)$ depending on the parameter $t$), (A4) ($P(t)$ is Jongen–Jonker– Twilt regular) and two technical assumptions, (A1) and (A2), there exists a path in the set of stationary points connecting the chosen starting point for $P(0)$ with a certain point for $P(1)$ and this point is a solution for the (LCP). This path may include types of singularities, namely points of Type 2 and Type 3 in the class of Jongen–Jonker–Twilt for $t\in [0,1)$. We can follow this path by using pathfollowing procedures (included in the program package PAFO). In case that the condition (A3) is not satisfied, also points of Type 4 and 5 may appear. The assumption (A4) will be justified by a perturbation theorem. Illustrative examples are presented.
LA - eng
KW - linear complementarity problem; standard embedding; Jongen– Jonker–Twilt regularity; Mangasarian–Fromovitz constraint qualification; pathfollowing methods; linear complementarity problem; Jongen-Jonker-Twilt regularity; Mangasarian-Fromovitz constraint qualification; pathfollowing method
UR - http://eudml.org/doc/33719
ER -
References
top- Allonso S. Allende, Guddat, J., Nowack D., A modified penalty embedding for linear complementarity problems, Investigación Oper. 23 (2002), 1, 37–54 MR1932562
- Allgower E., Georg K., Numerical Continuation Methods, An Introduction. Springer–Verlag, Berlin 1990 Zbl1036.65047MR1059455
- Bank B., Guddat J., Klatte D., Kummer, B., Tammer K., Non-Linear Parametric Optimization, Akademie–Verlag Berlin, 1982 Zbl0502.49002
- Billups S. C., 10.1137/S1052623498337431, SIAM J. Optim. 12 (2002), 583–605 Zbl1056.90132MR1884907DOI10.1137/S1052623498337431
- Billups S. C., Watson L. T., 10.1137/S105262340037758X, SIAM J. Optim. 12 (2002), 606–626 MR1884908DOI10.1137/S105262340037758X
- Chen, Ch., Mangasarian O. L., 10.1007/BF01592244, Math. Programming 71 (1995), 51–69 (1995) Zbl0855.90124MR1362957DOI10.1007/BF01592244
- Pang R. W. Cottle J.-S., Stone R. E., The Linear Complementarity Problem, Academic Press, Boston, MA, 1992 MR1150683
- Facchinei F., Pang J.-P., Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol, I and Vol. II. Springer Series in Operations Research, 2003 Zbl1062.90002MR1955648
- Ferris M. C., Munson, T., Ralph D., A homotopy method for mixed complementarity problems based on the PATH–solver, In: Numerical Analysis 1999 (D. F. Griffiths and G. A. Watson, eds.), Research Notes in Mathematics, Chapman and Hall, London 2000, pp. 143–167 (1999) MR1751116
- Ferris M. C., Pang J.-S., 10.1137/S0036144595285963, SIAM Rev. 39 (1997), 669–713 (1997) MR1491052DOI10.1137/S0036144595285963
- Fischer A., 10.1007/BF02192160, J. Optim. Theory Appl. 86 (1995), 3, 585–608 (1995) Zbl0839.90121MR1348771DOI10.1007/BF02192160
- Fischer A., Kanzow, CH., 10.1007/BF02592200, Math. Programming 74 (1996), xxx–xxx (1996) Zbl0855.90125MR1407689DOI10.1007/BF02592200
- Gfrerer H., Guddat J., Wacker,, Hj., Zulehner W., Pathfollowing methods for Kuhn–Tucker curves by an active index set strategy, In: Systems and optimization (A. Bagchi and T. Th. Jongen, eds.), (Lecture Notes in Control and Information Sciences 66), Springer–Verlag Berlin, Heidelberg – New York 1985, pp. 111–131 (1985) MR0878586
- Gollmer R., Kausmann U., Nowack D., Wendler, K., Estrada J. Bacallao, Computerprogramm PAFO, Humboldt-Universität Berlin, Institut für Mathematik xxxx
- Gomez W., Guddat J., Jongen H. Th., Rückmann J.-J., Solano C., Curvas criticas y saltos en optimizacion nolineal, Electronic Publication: The Electronic Library of Mathematics, http://www.emis.de/monographs/curvas/index.html
- Guddat J., Guerra, F., Jongen H. Th., Parametric Optimization: Singularities, Pathfollowing and Jumps, BG Teubner, Stuttgart and John Wiley, Chichester 1990 Zbl0718.90056MR1085483
- Jongen H. Th., Jonker, P., Twilt F., 10.1007/BF01582234, Math. Programming 34 (1986), 333–353 (1986) Zbl0599.90114MR0839608DOI10.1007/BF01582234
- Jongen H. Th., Jonker, P., Twilt F., Nonlinear Optimization in Finite Dimension: Morse Theory, Chebysher Approximation, Transversality, Flows, Parametric Aspects, Kluwer, 2000 MR1794354
- Kanzow, Ch., 10.1137/S0895479894273134, SIAM J. Appl. Anal. 17 (1996), 851–868 (1996) MR1410705DOI10.1137/S0895479894273134
- Kojima M., Megiddo N., Noma, T., Yoshishe A., A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Springer, Berlin 1991
- Nožička F., 10.1080/02331887208801074, Math. Operationsforschung Statist. 3, (1972), 159–194 (1972) Zbl0247.90037MR0334929DOI10.1080/02331887208801074
- Nožička F., Guddat J., Hollatz, H., Bank B., Theorie der linearen parametrischen Optimierung, Akademic–Verlag, Berlin 1974 Zbl0284.90053
- Reinholdt W. C., Numerical Analysis of Parametric Nonlinear Equations, John Wiley, New York 1986
- Rückmann J.-J., Tammer K., On linear-quadratic perturbations in one-parametric non-linear optimization, Systems Sci. 18 (1992), 1, 37–48 (1992) MR1222836
- Schmid R., Eine modifizierte Standardeinbettung zur Behandlung von Gleichungs- und Ungleichungsrestriktionen, Diplomarbeit, Humboldt-Universitiät zu Berlin, 2000
- Sellami H., Robinson S. M., 10.1007/BF02614398, Math. Programming 76 (1976), 563–578 (1976) MR1433971DOI10.1007/BF02614398
- Stoer J., Wechs H., 10.1007/BF02680568, Math. Programming 83 (1998), 407–423 (1998) Zbl0922.90136MR1650309DOI10.1007/BF02680568
- Stoer J., Wechs, M., Mizuni S., 10.1287/moor.23.4.832, Math. Oper. Res. 23 (1998), 832–862 (1998) MR1662418DOI10.1287/moor.23.4.832
- (ed.), Hj. Wacker, Continuation Methods, Academic Press, New York 1978 Zbl0465.65029MR0483273
- Watson T., 10.1137/0317004, SIAM J. Control Appl. 17 (1979), 36–46 (1979) Zbl0407.90083MR0516854DOI10.1137/0317004
- Xu S., Burke J. V., A polynomial time interior-point path-following algorithm for LCP based on Chen–Harker–Kanzow smoothing techniques, Math. Programming 86 (1999) (1999) Zbl0978.90097MR1712475
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.