Exact and approximate distributions for the product of Dirichlet components

Saralees Nadarajah; Samuel Kotz

Kybernetika (2004)

  • Volume: 40, Issue: 6, page [735]-744
  • ISSN: 0023-5954

Abstract

top
It is well known that X / ( X + Y ) has the beta distribution when X and Y follow the Dirichlet distribution. Linear combinations of the form α X + β Y have also been studied in Provost and Cheong [S. B. Provost and Y.-H. Cheong: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000)]. In this paper, we derive the exact distribution of the product P = X Y (involving the Gauss hypergeometric function) and the corresponding moment properties. We also propose an approximation and show evidence to prove its robustness. This approximation will be useful especially to the practitioners of the Dirichlet distribution.

How to cite

top

Nadarajah, Saralees, and Kotz, Samuel. "Exact and approximate distributions for the product of Dirichlet components." Kybernetika 40.6 (2004): [735]-744. <http://eudml.org/doc/33732>.

@article{Nadarajah2004,
abstract = {It is well known that $X/(X + Y)$ has the beta distribution when $X$ and $Y$ follow the Dirichlet distribution. Linear combinations of the form $\alpha X + \beta Y$ have also been studied in Provost and Cheong [S. B. Provost and Y.-H. Cheong: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000)]. In this paper, we derive the exact distribution of the product $P = X Y$ (involving the Gauss hypergeometric function) and the corresponding moment properties. We also propose an approximation and show evidence to prove its robustness. This approximation will be useful especially to the practitioners of the Dirichlet distribution.},
author = {Nadarajah, Saralees, Kotz, Samuel},
journal = {Kybernetika},
keywords = {approximation; Dirichlet distribution; Gauss hypergeometric function; approximation; Dirichlet distribution; Gauss hypergeometric function},
language = {eng},
number = {6},
pages = {[735]-744},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Exact and approximate distributions for the product of Dirichlet components},
url = {http://eudml.org/doc/33732},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Nadarajah, Saralees
AU - Kotz, Samuel
TI - Exact and approximate distributions for the product of Dirichlet components
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 6
SP - [735]
EP - 744
AB - It is well known that $X/(X + Y)$ has the beta distribution when $X$ and $Y$ follow the Dirichlet distribution. Linear combinations of the form $\alpha X + \beta Y$ have also been studied in Provost and Cheong [S. B. Provost and Y.-H. Cheong: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000)]. In this paper, we derive the exact distribution of the product $P = X Y$ (involving the Gauss hypergeometric function) and the corresponding moment properties. We also propose an approximation and show evidence to prove its robustness. This approximation will be useful especially to the practitioners of the Dirichlet distribution.
LA - eng
KW - approximation; Dirichlet distribution; Gauss hypergeometric function; approximation; Dirichlet distribution; Gauss hypergeometric function
UR - http://eudml.org/doc/33732
ER -

References

top
  1. Chapman D. G., 10.1214/aoms/1177729755, Ann. Math. Statist. 21 (1950), 601–606 (1950) Zbl0040.36602MR0043423DOI10.1214/aoms/1177729755
  2. Chaubey Y. P., Talukder A. B. M., Enayet, Nur, 10.1080/03610928308828487, Exact moments of a ratio of two positive quadratic forms in normal variables. Comm. Statist. – Theory Methods 12 (1983), 675–679 (1983) Zbl0513.62019MR0696814DOI10.1080/03610928308828487
  3. Dobson A. J., Kulasmaa, K., Scherer J., 10.1002/sim.4780100317, Statist. Medicine 10 (1991), 457–462 (1991) DOI10.1002/sim.4780100317
  4. Fan D.-Y., 10.1080/03610929108830755, Comm. Statist. – Theory Methods 20 (1991), 4043–4052 (1991) MR1158562DOI10.1080/03610929108830755
  5. Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, Sixth edition. Academic Press, San Diego 2000 Zbl1208.65001MR1773820
  6. Grice J. V., Bain L. J., 10.1080/01621459.1980.10477574, J. Amer. Statist. Assoc. 75 (1980), 929–933 (1980) Zbl0448.62013MR0600978DOI10.1080/01621459.1980.10477574
  7. Gupta A. K., Nadarajah S., Handbook of Beta Distribution and Its Applications, Marcel Dekker, New York 2004 Zbl1062.62021MR2079703
  8. Jackson O. A. Y., 10.2307/2346441, Appl. Statist. 18 (1969), 70–75 (1969) DOI10.2307/2346441
  9. Johannesson N., Giri N., 10.1080/03610919508813253, Comm. Statist. – Simulation Computation 24 (1995), 489–503 (1995) Zbl0850.62187MR1333048DOI10.1080/03610919508813253
  10. Kamgar-Parsi B., Kamgar-Parsi, B., Brosh M., 10.1080/00949659508811688, J. Statist. Comput. Simulation 52 (1995), 399–414 (1995) DOI10.1080/00949659508811688
  11. Kimball C. V., Scheibner D. J., 10.1190/1.1444334, Geophysics 63 (1998), 345–353 (1998) DOI10.1190/1.1444334
  12. Kotz S., Balakrishnan, N., Johnson N. L., Continuous Multivariate Distributions, Volume 1: Models and Applications. Second edition. Wiley, New York 2000 Zbl0946.62001MR1788152
  13. Lai T. L., 10.1214/aos/1176342619, Ann. Statist. 2 (1974), 134–147 (1974) Zbl0288.62043MR0353604DOI10.1214/aos/1176342619
  14. Linhart H., 10.2307/2528554, Biometrics 21 (1965), 733–738 (1965) MR0183053DOI10.2307/2528554
  15. Lowan A. N., Laderman J., 10.1214/aoms/1177732147, Ann. Math. Statist. 10 (1939), 360–364 (1939) Zbl0024.05601MR0000759DOI10.1214/aoms/1177732147
  16. Malik H. J., 10.1002/nav.3800170309, Naval Res. Logist. Quart. 17 (1970), 327–330 (1970) Zbl0225.62017DOI10.1002/nav.3800170309
  17. Mikhail N. N., Tracy D. S., 10.4153/CMB-1974-136-0, Canad. Math. Bull. 17 (1975), 757–758 (1975) MR0386155DOI10.4153/CMB-1974-136-0
  18. Monti K. L., Sen P. K., 10.1080/01621459.1976.10480967, J. Amer. Statist. Assoc. 71 (1976), 903–911 (1976) MR0426266DOI10.1080/01621459.1976.10480967
  19. Pham-Gia T., 10.1080/03610920008832632, Comm. Statist. – Theory Methods 29 (2000), 2693–2715 Zbl1107.62309MR1804259DOI10.1080/03610920008832632
  20. Pham-Gia T., Turkkan N., 10.1080/03610929308831114, Comm. Statist. – Theory Methods 22 (1993), 1755–1771 (1993) Zbl0784.62024MR1224989DOI10.1080/03610929308831114
  21. Pham-Gia T., Turkkan N., 10.1109/24.285114, IEEE Trans. Reliability (1994), 71–75 (1994) DOI10.1109/24.285114
  22. Pham-Gia, T., Turkkan N., 10.1080/03610929808832194, Comm. Statist. – Theory Methods 27 (1998), 1851–1869 (1998) Zbl0926.62008MR1647792DOI10.1080/03610929808832194
  23. Pham-Gia T., Turkkan N., 10.1007/s00362-002-0122-y, Statist. Papers 43 (2002) , 537–550 Zbl1008.62016MR1932772DOI10.1007/s00362-002-0122-y
  24. Provost S. B., Cheong Y.-H., 10.2307/3315988, Canad. J. Statist. 28 (2000), 417–425 Zbl0986.62037MR1792058DOI10.2307/3315988
  25. Provost S. B., Rudiuk E. M., The exact density function of the ratio of two dependent linear combinations of chi-square variables, Ann. Inst. Statist. Math. 46 (1994), 557–571 (1994) Zbl0817.62005MR1309724
  26. Prudnikov A. P., Brychkov Y. A., Marichev O. I., Integrals and Series, Volumes 1, 2 and 3. Gordon and Breach Science Publishers, Amsterdam 1986 Zbl1103.33300
  27. Rousseau B., Ennis D. M., 10.3758/BF03194526, Perception & Psychophysics 63 (2001), 1083–1090 DOI10.3758/BF03194526
  28. Sculli D., Wong K. L., 10.1016/0305-0483(85)90061-1, Omega Internat. J. Manag. Sci. 13 (1985), 233–240 (1985) DOI10.1016/0305-0483(85)90061-1
  29. Stein C., 10.1214/aoms/1177731088, Ann. Math. Statist. 16 (1945), 243–258 (1945) Zbl0060.30403MR0013885DOI10.1214/aoms/1177731088
  30. Toyoda T., Ohtani K., 10.1016/0304-4076(86)90056-4, J. Econometrics 31 (1986), 67–80 (1986) MR0838853DOI10.1016/0304-4076(86)90056-4
  31. Neumann J. von, 10.1214/aoms/1177731677, Ann. Math. Statist. 12 (1941), 367–395 (1941) MR0006656DOI10.1214/aoms/1177731677
  32. Witkovský V., Computing the distribution of a linear combination of inverted gamma variables, Kybernetika 37 (2001), 79–90 MR1825758
  33. Yatchew A. J., 10.1080/03610928608829226, Comm. Statist. – Theory Methods 15 (1986), 1905–1926 (1986) Zbl0605.62054MR0848171DOI10.1080/03610928608829226

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.