Exact and approximate distributions for the product of Dirichlet components
Saralees Nadarajah; Samuel Kotz
Kybernetika (2004)
- Volume: 40, Issue: 6, page [735]-744
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topNadarajah, Saralees, and Kotz, Samuel. "Exact and approximate distributions for the product of Dirichlet components." Kybernetika 40.6 (2004): [735]-744. <http://eudml.org/doc/33732>.
@article{Nadarajah2004,
abstract = {It is well known that $X/(X + Y)$ has the beta distribution when $X$ and $Y$ follow the Dirichlet distribution. Linear combinations of the form $\alpha X + \beta Y$ have also been studied in Provost and Cheong [S. B. Provost and Y.-H. Cheong: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000)]. In this paper, we derive the exact distribution of the product $P = X Y$ (involving the Gauss hypergeometric function) and the corresponding moment properties. We also propose an approximation and show evidence to prove its robustness. This approximation will be useful especially to the practitioners of the Dirichlet distribution.},
author = {Nadarajah, Saralees, Kotz, Samuel},
journal = {Kybernetika},
keywords = {approximation; Dirichlet distribution; Gauss hypergeometric function; approximation; Dirichlet distribution; Gauss hypergeometric function},
language = {eng},
number = {6},
pages = {[735]-744},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Exact and approximate distributions for the product of Dirichlet components},
url = {http://eudml.org/doc/33732},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Nadarajah, Saralees
AU - Kotz, Samuel
TI - Exact and approximate distributions for the product of Dirichlet components
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 6
SP - [735]
EP - 744
AB - It is well known that $X/(X + Y)$ has the beta distribution when $X$ and $Y$ follow the Dirichlet distribution. Linear combinations of the form $\alpha X + \beta Y$ have also been studied in Provost and Cheong [S. B. Provost and Y.-H. Cheong: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000)]. In this paper, we derive the exact distribution of the product $P = X Y$ (involving the Gauss hypergeometric function) and the corresponding moment properties. We also propose an approximation and show evidence to prove its robustness. This approximation will be useful especially to the practitioners of the Dirichlet distribution.
LA - eng
KW - approximation; Dirichlet distribution; Gauss hypergeometric function; approximation; Dirichlet distribution; Gauss hypergeometric function
UR - http://eudml.org/doc/33732
ER -
References
top- Chapman D. G., 10.1214/aoms/1177729755, Ann. Math. Statist. 21 (1950), 601–606 (1950) Zbl0040.36602MR0043423DOI10.1214/aoms/1177729755
- Chaubey Y. P., Talukder A. B. M., Enayet, Nur, 10.1080/03610928308828487, Exact moments of a ratio of two positive quadratic forms in normal variables. Comm. Statist. – Theory Methods 12 (1983), 675–679 (1983) Zbl0513.62019MR0696814DOI10.1080/03610928308828487
- Dobson A. J., Kulasmaa, K., Scherer J., 10.1002/sim.4780100317, Statist. Medicine 10 (1991), 457–462 (1991) DOI10.1002/sim.4780100317
- Fan D.-Y., 10.1080/03610929108830755, Comm. Statist. – Theory Methods 20 (1991), 4043–4052 (1991) MR1158562DOI10.1080/03610929108830755
- Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, Sixth edition. Academic Press, San Diego 2000 Zbl1208.65001MR1773820
- Grice J. V., Bain L. J., 10.1080/01621459.1980.10477574, J. Amer. Statist. Assoc. 75 (1980), 929–933 (1980) Zbl0448.62013MR0600978DOI10.1080/01621459.1980.10477574
- Gupta A. K., Nadarajah S., Handbook of Beta Distribution and Its Applications, Marcel Dekker, New York 2004 Zbl1062.62021MR2079703
- Jackson O. A. Y., 10.2307/2346441, Appl. Statist. 18 (1969), 70–75 (1969) DOI10.2307/2346441
- Johannesson N., Giri N., 10.1080/03610919508813253, Comm. Statist. – Simulation Computation 24 (1995), 489–503 (1995) Zbl0850.62187MR1333048DOI10.1080/03610919508813253
- Kamgar-Parsi B., Kamgar-Parsi, B., Brosh M., 10.1080/00949659508811688, J. Statist. Comput. Simulation 52 (1995), 399–414 (1995) DOI10.1080/00949659508811688
- Kimball C. V., Scheibner D. J., 10.1190/1.1444334, Geophysics 63 (1998), 345–353 (1998) DOI10.1190/1.1444334
- Kotz S., Balakrishnan, N., Johnson N. L., Continuous Multivariate Distributions, Volume 1: Models and Applications. Second edition. Wiley, New York 2000 Zbl0946.62001MR1788152
- Lai T. L., 10.1214/aos/1176342619, Ann. Statist. 2 (1974), 134–147 (1974) Zbl0288.62043MR0353604DOI10.1214/aos/1176342619
- Linhart H., 10.2307/2528554, Biometrics 21 (1965), 733–738 (1965) MR0183053DOI10.2307/2528554
- Lowan A. N., Laderman J., 10.1214/aoms/1177732147, Ann. Math. Statist. 10 (1939), 360–364 (1939) Zbl0024.05601MR0000759DOI10.1214/aoms/1177732147
- Malik H. J., 10.1002/nav.3800170309, Naval Res. Logist. Quart. 17 (1970), 327–330 (1970) Zbl0225.62017DOI10.1002/nav.3800170309
- Mikhail N. N., Tracy D. S., 10.4153/CMB-1974-136-0, Canad. Math. Bull. 17 (1975), 757–758 (1975) MR0386155DOI10.4153/CMB-1974-136-0
- Monti K. L., Sen P. K., 10.1080/01621459.1976.10480967, J. Amer. Statist. Assoc. 71 (1976), 903–911 (1976) MR0426266DOI10.1080/01621459.1976.10480967
- Pham-Gia T., 10.1080/03610920008832632, Comm. Statist. – Theory Methods 29 (2000), 2693–2715 Zbl1107.62309MR1804259DOI10.1080/03610920008832632
- Pham-Gia T., Turkkan N., 10.1080/03610929308831114, Comm. Statist. – Theory Methods 22 (1993), 1755–1771 (1993) Zbl0784.62024MR1224989DOI10.1080/03610929308831114
- Pham-Gia T., Turkkan N., 10.1109/24.285114, IEEE Trans. Reliability (1994), 71–75 (1994) DOI10.1109/24.285114
- Pham-Gia, T., Turkkan N., 10.1080/03610929808832194, Comm. Statist. – Theory Methods 27 (1998), 1851–1869 (1998) Zbl0926.62008MR1647792DOI10.1080/03610929808832194
- Pham-Gia T., Turkkan N., 10.1007/s00362-002-0122-y, Statist. Papers 43 (2002) , 537–550 Zbl1008.62016MR1932772DOI10.1007/s00362-002-0122-y
- Provost S. B., Cheong Y.-H., 10.2307/3315988, Canad. J. Statist. 28 (2000), 417–425 Zbl0986.62037MR1792058DOI10.2307/3315988
- Provost S. B., Rudiuk E. M., The exact density function of the ratio of two dependent linear combinations of chi-square variables, Ann. Inst. Statist. Math. 46 (1994), 557–571 (1994) Zbl0817.62005MR1309724
- Prudnikov A. P., Brychkov Y. A., Marichev O. I., Integrals and Series, Volumes 1, 2 and 3. Gordon and Breach Science Publishers, Amsterdam 1986 Zbl1103.33300
- Rousseau B., Ennis D. M., 10.3758/BF03194526, Perception & Psychophysics 63 (2001), 1083–1090 DOI10.3758/BF03194526
- Sculli D., Wong K. L., 10.1016/0305-0483(85)90061-1, Omega Internat. J. Manag. Sci. 13 (1985), 233–240 (1985) DOI10.1016/0305-0483(85)90061-1
- Stein C., 10.1214/aoms/1177731088, Ann. Math. Statist. 16 (1945), 243–258 (1945) Zbl0060.30403MR0013885DOI10.1214/aoms/1177731088
- Toyoda T., Ohtani K., 10.1016/0304-4076(86)90056-4, J. Econometrics 31 (1986), 67–80 (1986) MR0838853DOI10.1016/0304-4076(86)90056-4
- Neumann J. von, 10.1214/aoms/1177731677, Ann. Math. Statist. 12 (1941), 367–395 (1941) MR0006656DOI10.1214/aoms/1177731677
- Witkovský V., Computing the distribution of a linear combination of inverted gamma variables, Kybernetika 37 (2001), 79–90 MR1825758
- Yatchew A. J., 10.1080/03610928608829226, Comm. Statist. – Theory Methods 15 (1986), 1905–1926 (1986) Zbl0605.62054MR0848171DOI10.1080/03610928608829226
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.