Robust pole placement for second-order systems: an LMI approach
Didier Henrion; Michael Šebek; Vladimír Kučera
Kybernetika (2005)
- Volume: 41, Issue: 1, page [1]-14
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHenrion, Didier, Šebek, Michael, and Kučera, Vladimír. "Robust pole placement for second-order systems: an LMI approach." Kybernetika 41.1 (2005): [1]-14. <http://eudml.org/doc/33735>.
@article{Henrion2005,
abstract = {Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.},
author = {Henrion, Didier, Šebek, Michael, Kučera, Vladimír},
journal = {Kybernetika},
keywords = {polynomial matrix; second-order linear systems; LMI; pole placement; robust control; polynomial matrix; second-order linear system; LMI; pole placement; robust control},
language = {eng},
number = {1},
pages = {[1]-14},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust pole placement for second-order systems: an LMI approach},
url = {http://eudml.org/doc/33735},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Henrion, Didier
AU - Šebek, Michael
AU - Kučera, Vladimír
TI - Robust pole placement for second-order systems: an LMI approach
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 1
SP - [1]
EP - 14
AB - Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.
LA - eng
KW - polynomial matrix; second-order linear systems; LMI; pole placement; robust control; polynomial matrix; second-order linear system; LMI; pole placement; robust control
UR - http://eudml.org/doc/33735
ER -
References
top- Ackermann J., Robust Control, Systems with Uncertain Physical Parameters. Springer Verlag, Berlin 1993 Zbl1054.93019MR1266389
- Barb F. D., Ben-Tal, A., Nemirovski A., 10.1137/S0363012901398174, SIAM J. Control Optim. 41 (2002), 6, 1661–1695 DOI10.1137/S0363012901398174
- Bernussou J., Peres P. L. D., Geromel J. C., 10.1016/0167-6911(89)90022-4, Systems Control Lett. 13 (1989) 65–72 (1989) Zbl0678.93042MR1006849DOI10.1016/0167-6911(89)90022-4
- Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V., Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Philadelphia, Pennsylvania 1994 Zbl0816.93004MR1284712
- Chilali M., Gahinet P., 10.1109/9.486637, IEEE Trans. Automat. Control 41 (1996), 3, 358–367 (1996) MR1382985DOI10.1109/9.486637
- Chu E. K., Datta B. N., 10.1080/00207179608921677, Internat. J. Control 64 (1996), 1113–1127 (1996) Zbl0850.93318MR1664806DOI10.1080/00207179608921677
- Datta B. N., Elhay, S., Ram Y. M., Orthogonality and partial pole assignment for the symmetric definite quadratic pencil, Linear Algebra Appl. 257 (1997), 29–48, 1997 (1997) Zbl0876.15009MR1441702
- Diwekar A. M., Yedavalli R. K., 10.1109/9.788551, IEEE Trans. Automat. Control 44 (1999), 9, 1773–1777 (1999) Zbl0958.93081MR1710122DOI10.1109/9.788551
- Duan G. R., Liu G. P., 10.1016/S0005-1098(01)00251-5, Automatica 38 (2002), 4, 725–729 Zbl1009.93036MR2131479DOI10.1016/S0005-1098(01)00251-5
- Ghaoui L. El, Oustry, F., Lebret H., 10.1137/S1052623496305717, SIAM J. Optim. 9 (1998), 1, 33–52 (1998) Zbl0960.93007MR1660106DOI10.1137/S1052623496305717
- Genin Y., Nesterov, Y., Dooren P. Van, Optimization over Positive Polynomial Matrices, In: Proc. Internat. Symposium on Mathematical Theory of Networks and Systems, Perpignan 2000
- Henrion D., Arzelier, D., Peaucelle D., Positive polynomial matrices and improved LMI robustness conditions, Automatica 39 (2003), 8, 1479–1485 Zbl1037.93027MR2142253
- Henrion D., Arzelier D., Peaucelle, D., Šebek M., 10.1016/S0005-1098(00)00170-9, Automatica 37 (2001), 3, 461–468 Zbl0982.93057MR1843990DOI10.1016/S0005-1098(00)00170-9
- Henrion D., Bachelier, O., Šebek M., D-stability of polynomial matrices, Internat. J. Control 74 (2001), 8, 845–856 Zbl1011.93083MR1832952
- Inman D. J., Kress A., 10.2514/3.21433, AIAA J. Guidance, Control and Dynamics 18 (1995), 3, 625–627 (1995) DOI10.2514/3.21433
- Nichols N. K., Kautsky J., 10.1137/S0895479899362867, SIAM J. Matrix Analysis Appl. 23 (2001), 1, 77–102 Zbl0995.65069MR1856600DOI10.1137/S0895479899362867
- Oliveira M. C. de, Bernussou, J., Geromel J. C., 10.1016/S0167-6911(99)00035-3, Systems Control Lett. 37 (1999), 261–265 (1999) Zbl0948.93058MR1751256DOI10.1016/S0167-6911(99)00035-3
- Peaucelle D., Arzelier D., Bachelier, O., Bernussou J., 10.1016/S0167-6911(99)00119-X, Systems Control Lett. 40 (2000), 21–30 Zbl0977.93067MR1829071DOI10.1016/S0167-6911(99)00119-X
- Peaucelle D., Henrion, D., Labit Y., SeDuMi Interface: A user-friendly free Matlab package for defining LMI problems, In: Proc. IEEE Conference on Computer-Aided Control System Design, Glasgow 2002
- Skelton R. E., Iwasaki, T., Grigoriadis K., A Unified Algebraic Approach to Linear Control Design, Taylor and Francis, London 1998 MR1484416
- Tisseur F., Higham N. J., 10.1137/S0895479800371451, SIAM J. Matrix Analysis Appl. 23 (2001), 1, 187–208 Zbl0996.65042MR1856605DOI10.1137/S0895479800371451
- Tisseur F., Meerbergen K., 10.1137/S0036144500381988, SIAM Rev. 43 (2001), 2, 235–286 Zbl0985.65028MR1861082DOI10.1137/S0036144500381988
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.