Robust pole placement for second-order systems: an LMI approach

Didier Henrion; Michael Šebek; Vladimír Kučera

Kybernetika (2005)

  • Volume: 41, Issue: 1, page [1]-14
  • ISSN: 0023-5954

Abstract

top
Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.

How to cite

top

Henrion, Didier, Šebek, Michael, and Kučera, Vladimír. "Robust pole placement for second-order systems: an LMI approach." Kybernetika 41.1 (2005): [1]-14. <http://eudml.org/doc/33735>.

@article{Henrion2005,
abstract = {Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.},
author = {Henrion, Didier, Šebek, Michael, Kučera, Vladimír},
journal = {Kybernetika},
keywords = {polynomial matrix; second-order linear systems; LMI; pole placement; robust control; polynomial matrix; second-order linear system; LMI; pole placement; robust control},
language = {eng},
number = {1},
pages = {[1]-14},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust pole placement for second-order systems: an LMI approach},
url = {http://eudml.org/doc/33735},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Henrion, Didier
AU - Šebek, Michael
AU - Kučera, Vladimír
TI - Robust pole placement for second-order systems: an LMI approach
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 1
SP - [1]
EP - 14
AB - Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.
LA - eng
KW - polynomial matrix; second-order linear systems; LMI; pole placement; robust control; polynomial matrix; second-order linear system; LMI; pole placement; robust control
UR - http://eudml.org/doc/33735
ER -

References

top
  1. Ackermann J., Robust Control, Systems with Uncertain Physical Parameters. Springer Verlag, Berlin 1993 Zbl1054.93019MR1266389
  2. Barb F. D., Ben-Tal, A., Nemirovski A., 10.1137/S0363012901398174, SIAM J. Control Optim. 41 (2002), 6, 1661–1695 DOI10.1137/S0363012901398174
  3. Bernussou J., Peres P. L. D., Geromel J. C., 10.1016/0167-6911(89)90022-4, Systems Control Lett. 13 (1989) 65–72 (1989) Zbl0678.93042MR1006849DOI10.1016/0167-6911(89)90022-4
  4. Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V., Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Philadelphia, Pennsylvania 1994 Zbl0816.93004MR1284712
  5. Chilali M., Gahinet P., 10.1109/9.486637, IEEE Trans. Automat. Control 41 (1996), 3, 358–367 (1996) MR1382985DOI10.1109/9.486637
  6. Chu E. K., Datta B. N., 10.1080/00207179608921677, Internat. J. Control 64 (1996), 1113–1127 (1996) Zbl0850.93318MR1664806DOI10.1080/00207179608921677
  7. Datta B. N., Elhay, S., Ram Y. M., Orthogonality and partial pole assignment for the symmetric definite quadratic pencil, Linear Algebra Appl. 257 (1997), 29–48, 1997 (1997) Zbl0876.15009MR1441702
  8. Diwekar A. M., Yedavalli R. K., 10.1109/9.788551, IEEE Trans. Automat. Control 44 (1999), 9, 1773–1777 (1999) Zbl0958.93081MR1710122DOI10.1109/9.788551
  9. Duan G. R., Liu G. P., 10.1016/S0005-1098(01)00251-5, Automatica 38 (2002), 4, 725–729 Zbl1009.93036MR2131479DOI10.1016/S0005-1098(01)00251-5
  10. Ghaoui L. El, Oustry, F., Lebret H., 10.1137/S1052623496305717, SIAM J. Optim. 9 (1998), 1, 33–52 (1998) Zbl0960.93007MR1660106DOI10.1137/S1052623496305717
  11. Genin Y., Nesterov, Y., Dooren P. Van, Optimization over Positive Polynomial Matrices, In: Proc. Internat. Symposium on Mathematical Theory of Networks and Systems, Perpignan 2000 
  12. Henrion D., Arzelier, D., Peaucelle D., Positive polynomial matrices and improved LMI robustness conditions, Automatica 39 (2003), 8, 1479–1485 Zbl1037.93027MR2142253
  13. Henrion D., Arzelier D., Peaucelle, D., Šebek M., 10.1016/S0005-1098(00)00170-9, Automatica 37 (2001), 3, 461–468 Zbl0982.93057MR1843990DOI10.1016/S0005-1098(00)00170-9
  14. Henrion D., Bachelier, O., Šebek M., D-stability of polynomial matrices, Internat. J. Control 74 (2001), 8, 845–856 Zbl1011.93083MR1832952
  15. Inman D. J., Kress A., 10.2514/3.21433, AIAA J. Guidance, Control and Dynamics 18 (1995), 3, 625–627 (1995) DOI10.2514/3.21433
  16. Nichols N. K., Kautsky J., 10.1137/S0895479899362867, SIAM J. Matrix Analysis Appl. 23 (2001), 1, 77–102 Zbl0995.65069MR1856600DOI10.1137/S0895479899362867
  17. Oliveira M. C. de, Bernussou, J., Geromel J. C., 10.1016/S0167-6911(99)00035-3, Systems Control Lett. 37 (1999), 261–265 (1999) Zbl0948.93058MR1751256DOI10.1016/S0167-6911(99)00035-3
  18. Peaucelle D., Arzelier D., Bachelier, O., Bernussou J., 10.1016/S0167-6911(99)00119-X, Systems Control Lett. 40 (2000), 21–30 Zbl0977.93067MR1829071DOI10.1016/S0167-6911(99)00119-X
  19. Peaucelle D., Henrion, D., Labit Y., SeDuMi Interface: A user-friendly free Matlab package for defining LMI problems, In: Proc. IEEE Conference on Computer-Aided Control System Design, Glasgow 2002 
  20. Skelton R. E., Iwasaki, T., Grigoriadis K., A Unified Algebraic Approach to Linear Control Design, Taylor and Francis, London 1998 MR1484416
  21. Tisseur F., Higham N. J., 10.1137/S0895479800371451, SIAM J. Matrix Analysis Appl. 23 (2001), 1, 187–208 Zbl0996.65042MR1856605DOI10.1137/S0895479800371451
  22. Tisseur F., Meerbergen K., 10.1137/S0036144500381988, SIAM Rev. 43 (2001), 2, 235–286 Zbl0985.65028MR1861082DOI10.1137/S0036144500381988

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.