Extension to copulas and quasi-copulas as special -Lipschitz aggregation operators
Erich Peter Klement; Anna Kolesárová
Kybernetika (2005)
- Volume: 41, Issue: 3, page [329]-348
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKlement, Erich Peter, and Kolesárová, Anna. "Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators." Kybernetika 41.3 (2005): [329]-348. <http://eudml.org/doc/33757>.
@article{Klement2005,
abstract = {Smallest and greatest $1$-Lipschitz aggregation operators with given diagonal section, opposite diagonal section, and with graphs passing through a single point of the unit cube, respectively, are determined. These results are used to find smallest and greatest copulas and quasi-copulas with these properties (provided they exist).},
author = {Klement, Erich Peter, Kolesárová, Anna},
journal = {Kybernetika},
keywords = {copula; quasi-copula; $1$-Lipschitz aggregation operator; diagonal; copula; quasi-copula; 1-Lipschitz aggregation operator; diagonal},
language = {eng},
number = {3},
pages = {[329]-348},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators},
url = {http://eudml.org/doc/33757},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Klement, Erich Peter
AU - Kolesárová, Anna
TI - Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 3
SP - [329]
EP - 348
AB - Smallest and greatest $1$-Lipschitz aggregation operators with given diagonal section, opposite diagonal section, and with graphs passing through a single point of the unit cube, respectively, are determined. These results are used to find smallest and greatest copulas and quasi-copulas with these properties (provided they exist).
LA - eng
KW - copula; quasi-copula; $1$-Lipschitz aggregation operator; diagonal; copula; quasi-copula; 1-Lipschitz aggregation operator; diagonal
UR - http://eudml.org/doc/33757
ER -
References
top- Alsina C., Nelsen R. B., Schweizer B., 10.1016/0167-7152(93)90001-Y, Statist. Probab. Lett. 17 (1993), 85–89 (1993) Zbl0798.60023MR1223530DOI10.1016/0167-7152(93)90001-Y
- Bertino S., On dissimilarity between cyclic permutations, Metron 35 (1977), 53–88. In Italian (1977) MR0600402
- Calvo T., Kolesárová A., Komorníková, M., Mesiar R., Aggregation operators: properties, classes and construction methods, In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104 Zbl1039.03015MR1936383
- Durante F., Mesiar, R., Sempi C., On a family of copulas constructed from the diagonal section, Soft Computing (accepted for publication) Zbl1098.60016
- Frank M. J., 10.1007/BF02189866, Aequationes Math. 19 (1979), 194–226 (1979) Zbl0444.39003MR0556722DOI10.1007/BF02189866
- Frank M. J., Diagonals of copulas and Schröder’s equation, Aequationes Math. 51 (1996), 150 (1996)
- Fredricks G. A., Nelsen R. B., Copulas constructed from diagonal sections, In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 (1997) Zbl0906.60022MR1614666
- Fredricks G. A., Nelsen R. B., The Bertino family of copulas, In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 Zbl1135.62334MR2058982
- Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C., 10.1006/jmva.1998.1809, J. Multivariate Anal. 69 (1999) 193–205 (1999) MR1703371DOI10.1006/jmva.1998.1809
- Klement E. P., Mesiar, R., Pap E., Triangular Norms, Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
- Kolesárová A., -Lipschitz aggregation operators and quasi-copulas, Kybernetika 39 (2003), 615–629 MR2042344
- Kolesárová A., Mordelová J., -Lipschitz and kernel aggregation operators, In: Proc. AGOP ’2001, Oviedo 2001, pp. 71–76
- Nelsen R. B., 10.1007/978-1-4757-3076-0, (Lecture Notes in Statistics 139.) Springer, New York 1999 Zbl1152.62030MR1653203DOI10.1007/978-1-4757-3076-0
- Nelsen R. B., Fredricks G. A., Diagonal copulas, In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 121–127 (1997) Zbl0906.60021MR1614665
- Nelsen R. B., Molina J. J. Quesada, Lallena J. A. Rodríguez, Flores M. Úbeda, 10.1016/j.jmva.2003.09.002, J. Multivariate Anal. 90 (2004), 348–358 MR2081783DOI10.1016/j.jmva.2003.09.002
- Schweizer B., Sklar A., Probabilistic Metric Spaces, North–Holland, New York 1983 Zbl0546.60010MR0790314
- Sklar A., Fonctions de répartition à dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 (1959) MR0125600
- Sklar A., Random variables, joint distribution functions, and copulas, Kybernetika 9 (1973), 449–460 (1973) Zbl0292.60036MR0345164
- Sungur E. A., Yang Y., 10.1080/03610929608831791, Comm. Statist. Theory Methods 25 (1996), 1659–1676 (1996) Zbl0900.62339MR1411104DOI10.1080/03610929608831791
Citations in EuDML Documents
top- Bernard De Baets, Hans De Meyer, Radko Mesiar, Asymmetric semilinear copulas
- Erich Peter Klement, Radko Mesiar, How non-symmetric can a copula be?
- Manuel Úbeda-Flores, A new family of trivariate proper quasi-copulas
- Gaspar Mayor, Radko Mesiar, Joan Torrens, On quasi-homogeneous copulas
- Fabrizio Durante, Anna Kolesárová, Radko Mesiar, Carlo Sempi, Copulas with given values on a horizontal and a vertical section
- José Antonio Rodríguez–Lallena, Manuel Úbeda-Flores, Quasi-copulas with quadratic sections in one variable
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.