A new family of trivariate proper quasi-copulas

Manuel Úbeda-Flores

Kybernetika (2007)

  • Volume: 43, Issue: 1, page 75-85
  • ISSN: 0023-5954

Abstract

top
In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that W 3 – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of W 3 is distributed on the plane x + y + z = 2 of [ 0 , 1 ] 3 in an easy manner, and providing the generalization of this result to n dimensions.

How to cite

top

Úbeda-Flores, Manuel. "A new family of trivariate proper quasi-copulas." Kybernetika 43.1 (2007): 75-85. <http://eudml.org/doc/33841>.

@article{Úbeda2007,
abstract = {In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that $W^\{3\}$ – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of $W^3$ is distributed on the plane $x+y+z=2$ of $[0,1]^3$ in an easy manner, and providing the generalization of this result to $n$ dimensions.},
author = {Úbeda-Flores, Manuel},
journal = {Kybernetika},
keywords = {copula; mass distribution; quasi-copula; mass distribution},
language = {eng},
number = {1},
pages = {75-85},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new family of trivariate proper quasi-copulas},
url = {http://eudml.org/doc/33841},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Úbeda-Flores, Manuel
TI - A new family of trivariate proper quasi-copulas
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 1
SP - 75
EP - 85
AB - In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that $W^{3}$ – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of $W^3$ is distributed on the plane $x+y+z=2$ of $[0,1]^3$ in an easy manner, and providing the generalization of this result to $n$ dimensions.
LA - eng
KW - copula; mass distribution; quasi-copula; mass distribution
UR - http://eudml.org/doc/33841
ER -

References

top
  1. Alsina C., Nelsen R. B., Schweizer B., 10.1016/0167-7152(93)90001-Y, Statist. Probab. Lett. 17 (1993), 85–89 (1993) Zbl0798.60023MR1223530DOI10.1016/0167-7152(93)90001-Y
  2. Beliakov G., Calvo, T., Lázaro J., Pointwise construction of Lipschitz aggregation operators, In: Proc. Information and Management of Uncertainty in Knowledge-Based Systems (IPMU) 2006, pp. 595–601 Zbl1120.68099
  3. Calvo T., Kolesárová A., Komorníková, M., Mesiar R., Aggregation operators: properties, classes and construction methods, In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 3–105 Zbl1039.03015MR1936383
  4. Cuculescu, I., Theodorescu R., Copulas: diagonals and tracks, Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742 MR1929521
  5. Dall’Aglio G., Fréchet classes and compatibility of distribution functions, Symp. Math. 9 (1972), 131–150 (1972) Zbl0243.60007MR0339311
  6. Baets, B. De, Meyer H. De, Orthogonal grid constructions of copulas, IEEE Trans. Fuzzy Systems (to appear) 
  7. Baets B. De, Meyer, H. De, Úbeda-Flores M., Mass distribution associated with a trivariate quasi-copula, Preprint, 2006 Zbl1131.62044
  8. Durante F., 10.1142/S0218488505003679, Internat. J. Uncertainty, Fuzziness and Knowledge-Based Syst. 13 (2005), 567–577 Zbl1137.62353MR2198350DOI10.1142/S0218488505003679
  9. Janssens S., Baets, B. De, Meyer H. De, Bell-type inequalities for quasi-copulas, Fuzzy Sets Syst. 148 (2004), 263–278 Zbl1057.81011MR2100199
  10. Klement E. P., Kolesárová A., 1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals, In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211 Zbl1071.62048MR2118098
  11. Klement E. P., Kolesárová A., Extension to copulas and quasi-copulas as special 1–Lipschitz aggregation operators, Kybernetika 41 (2005), 329–348 MR2181422
  12. Kolesárová A., 1–Lipschitz aggregation operators and quasi-copulas, Kybernetika 39 (2003), 615–629 MR2042344
  13. Nelsen R. B., Copulas and quasi-copulas: An introduction to their properties and applications, In: Logical, algebraic, analytic, and probabilistic aspects of triangular norms (E. P. Klement, and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 Zbl1079.60021MR2165243
  14. Nelsen R. B., An Introduction to Copulas, Second Edition. Springer, New York 2006 Zbl1152.62030MR2197664
  15. Nelsen R. B., Úbeda-Flores M., 10.1016/j.crma.2005.09.026, CR Acad. Sci. Paris, Ser. I 341 (2005), 583–586 Zbl1076.62053MR2182439DOI10.1016/j.crma.2005.09.026
  16. Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., Multivariate Archimedean quasi-copulas, In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 187–194 Zbl1135.62338MR2058991
  17. Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.jmva.2003.09.002, J. Multivariate Anal. 90 (2004), 348–358 Zbl1057.62038MR2081783DOI10.1016/j.jmva.2003.09.002
  18. Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., On the construction of copulas and quasi-copulas with given diagonal sections, Insurance Math. Econom. (to appear) Zbl1152.60311MR2404309
  19. Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C., Derivability of some operations on distribution functions, In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), IMS Lecture Notes-Monograph Series Number 28, Hayward 1996, pp. 233–243 (1996) MR1485535
  20. Quesada-Molina J. J., Rodríguez-Lallena J. A., 10.1007/BF02589026, J. Ital. Statist. Soc. 3 (1994), 397–417 (1994) DOI10.1007/BF02589026
  21. Rodríguez-Lallena J. A., Úbeda-Flores M., Best-possible bounds on sets of multivariate distribution functions, Comm. Statist. Theory Methods 33 (2004), 805–820 Zbl1066.62056MR2042768
  22. Rodríguez-Lallena J. A., Úbeda-Flores M., Compatibility of three bivariate quasi-copulas: Applications to copulas, In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 173–180 Zbl1064.62060MR2118094
  23. Sklar A., Fonctions de répartition a ` n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 (1959) MR0125600
  24. Sklar A., Random variables, joint distribution functions, and copulas, Kybernetika 9 (1973), 449–460 (1973) Zbl0292.60036MR0345164

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.