A new family of trivariate proper quasi-copulas
Kybernetika (2007)
- Volume: 43, Issue: 1, page 75-85
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topÚbeda-Flores, Manuel. "A new family of trivariate proper quasi-copulas." Kybernetika 43.1 (2007): 75-85. <http://eudml.org/doc/33841>.
@article{Úbeda2007,
abstract = {In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that $W^\{3\}$ – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of $W^3$ is distributed on the plane $x+y+z=2$ of $[0,1]^3$ in an easy manner, and providing the generalization of this result to $n$ dimensions.},
author = {Úbeda-Flores, Manuel},
journal = {Kybernetika},
keywords = {copula; mass distribution; quasi-copula; mass distribution},
language = {eng},
number = {1},
pages = {75-85},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new family of trivariate proper quasi-copulas},
url = {http://eudml.org/doc/33841},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Úbeda-Flores, Manuel
TI - A new family of trivariate proper quasi-copulas
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 1
SP - 75
EP - 85
AB - In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that $W^{3}$ – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of $W^3$ is distributed on the plane $x+y+z=2$ of $[0,1]^3$ in an easy manner, and providing the generalization of this result to $n$ dimensions.
LA - eng
KW - copula; mass distribution; quasi-copula; mass distribution
UR - http://eudml.org/doc/33841
ER -
References
top- Alsina C., Nelsen R. B., Schweizer B., 10.1016/0167-7152(93)90001-Y, Statist. Probab. Lett. 17 (1993), 85–89 (1993) Zbl0798.60023MR1223530DOI10.1016/0167-7152(93)90001-Y
- Beliakov G., Calvo, T., Lázaro J., Pointwise construction of Lipschitz aggregation operators, In: Proc. Information and Management of Uncertainty in Knowledge-Based Systems (IPMU) 2006, pp. 595–601 Zbl1120.68099
- Calvo T., Kolesárová A., Komorníková, M., Mesiar R., Aggregation operators: properties, classes and construction methods, In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 3–105 Zbl1039.03015MR1936383
- Cuculescu, I., Theodorescu R., Copulas: diagonals and tracks, Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742 MR1929521
- Dall’Aglio G., Fréchet classes and compatibility of distribution functions, Symp. Math. 9 (1972), 131–150 (1972) Zbl0243.60007MR0339311
- Baets, B. De, Meyer H. De, Orthogonal grid constructions of copulas, IEEE Trans. Fuzzy Systems (to appear)
- Baets B. De, Meyer, H. De, Úbeda-Flores M., Mass distribution associated with a trivariate quasi-copula, Preprint, 2006 Zbl1131.62044
- Durante F., 10.1142/S0218488505003679, Internat. J. Uncertainty, Fuzziness and Knowledge-Based Syst. 13 (2005), 567–577 Zbl1137.62353MR2198350DOI10.1142/S0218488505003679
- Janssens S., Baets, B. De, Meyer H. De, Bell-type inequalities for quasi-copulas, Fuzzy Sets Syst. 148 (2004), 263–278 Zbl1057.81011MR2100199
- Klement E. P., Kolesárová A., 1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals, In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211 Zbl1071.62048MR2118098
- Klement E. P., Kolesárová A., Extension to copulas and quasi-copulas as special 1–Lipschitz aggregation operators, Kybernetika 41 (2005), 329–348 MR2181422
- Kolesárová A., 1–Lipschitz aggregation operators and quasi-copulas, Kybernetika 39 (2003), 615–629 MR2042344
- Nelsen R. B., Copulas and quasi-copulas: An introduction to their properties and applications, In: Logical, algebraic, analytic, and probabilistic aspects of triangular norms (E. P. Klement, and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 Zbl1079.60021MR2165243
- Nelsen R. B., An Introduction to Copulas, Second Edition. Springer, New York 2006 Zbl1152.62030MR2197664
- Nelsen R. B., Úbeda-Flores M., 10.1016/j.crma.2005.09.026, CR Acad. Sci. Paris, Ser. I 341 (2005), 583–586 Zbl1076.62053MR2182439DOI10.1016/j.crma.2005.09.026
- Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., Multivariate Archimedean quasi-copulas, In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 187–194 Zbl1135.62338MR2058991
- Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.jmva.2003.09.002, J. Multivariate Anal. 90 (2004), 348–358 Zbl1057.62038MR2081783DOI10.1016/j.jmva.2003.09.002
- Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., On the construction of copulas and quasi-copulas with given diagonal sections, Insurance Math. Econom. (to appear) Zbl1152.60311MR2404309
- Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C., Derivability of some operations on distribution functions, In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), IMS Lecture Notes-Monograph Series Number 28, Hayward 1996, pp. 233–243 (1996) MR1485535
- Quesada-Molina J. J., Rodríguez-Lallena J. A., 10.1007/BF02589026, J. Ital. Statist. Soc. 3 (1994), 397–417 (1994) DOI10.1007/BF02589026
- Rodríguez-Lallena J. A., Úbeda-Flores M., Best-possible bounds on sets of multivariate distribution functions, Comm. Statist. Theory Methods 33 (2004), 805–820 Zbl1066.62056MR2042768
- Rodríguez-Lallena J. A., Úbeda-Flores M., Compatibility of three bivariate quasi-copulas: Applications to copulas, In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 173–180 Zbl1064.62060MR2118094
- Sklar A., Fonctions de répartition dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 (1959) MR0125600
- Sklar A., Random variables, joint distribution functions, and copulas, Kybernetika 9 (1973), 449–460 (1973) Zbl0292.60036MR0345164
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.