Archimedean atomic lattice effect algebras in which all sharp elements are central

Zdena Riečanová

Kybernetika (2006)

  • Volume: 42, Issue: 2, page 143-150
  • ISSN: 0023-5954

Abstract

top
We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.

How to cite

top

Riečanová, Zdena. "Archimedean atomic lattice effect algebras in which all sharp elements are central." Kybernetika 42.2 (2006): 143-150. <http://eudml.org/doc/33797>.

@article{Riečanová2006,
abstract = {We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.},
author = {Riečanová, Zdena},
journal = {Kybernetika},
keywords = {lattice effect algebra; sharp and central element; block; state; subdirect decomposition; MacNeille completion; lattice effect algebra; sharp element; central element; block; subdirect decomposition; MacNeille completion},
language = {eng},
number = {2},
pages = {143-150},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Archimedean atomic lattice effect algebras in which all sharp elements are central},
url = {http://eudml.org/doc/33797},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Riečanová, Zdena
TI - Archimedean atomic lattice effect algebras in which all sharp elements are central
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 2
SP - 143
EP - 150
AB - We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.
LA - eng
KW - lattice effect algebra; sharp and central element; block; state; subdirect decomposition; MacNeille completion; lattice effect algebra; sharp element; central element; block; subdirect decomposition; MacNeille completion
UR - http://eudml.org/doc/33797
ER -

References

top
  1. Chang C. C., 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467–490 (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
  2. Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht – Boston – London and Ister Science, Bratislava 2000 MR1861369
  3. Foulis D., Bennett M. K., 10.1007/BF02283036, Found. Phys. 24 (1994), 1331–1352 (1994) MR1304942DOI10.1007/BF02283036
  4. Greechie R. J., 10.1016/0097-3165(71)90015-X, J. Combin. Theory Ser. A 10 (1971), 119–132 (1971) Zbl0219.06007MR0274355DOI10.1016/0097-3165(71)90015-X
  5. Greechie R. J., Foulis, D., Pulmannová S., 10.1007/BF01108592, Order 12 (1995), 91–106 (1995) Zbl0846.03031MR1336539DOI10.1007/BF01108592
  6. Jenča G., Riečanová Z., On sharp elements in lattice effect algebras, BUSEFAL 80 (1999), 24–29 (1999) 
  7. Kôpka F., Chovanec F., D -posets, Math. Slovaca 44 (1994), 21–34 (1994) Zbl0789.03048MR1290269
  8. Riečanová Z., 10.1023/A:1003683014627, Internat. J. Theor. Phys. 39 (2000), 859–869 Zbl0967.06008MR1792204DOI10.1023/A:1003683014627
  9. Riečanová Z., 10.1023/A:1003619806024, Internat. J. Theor. Phys. 39 (2000), 231–237 Zbl0968.81003MR1762594DOI10.1023/A:1003619806024
  10. Riečanová Z., Archimedean and block-finite lattice effect algebras, Demonstratio Math. 33 (2000), 443–452 MR1791464
  11. Riečanová Z., Orthogonal sets in effect algebras, Demonstratio Math. 34 (2001), 3, 525–532 MR1853730
  12. Riečanová Z., 10.1023/A:1011911512416, Internat. J. Theor. Phys. 40 40 (2001), 1683–1691 Zbl0989.81003MR1858217DOI10.1023/A:1011911512416
  13. Riečanová Z., 10.1023/A:1020136531601, Internat. J. Theor. Phys. 41 (2002), 1511–1524 MR1932844DOI10.1023/A:1020136531601
  14. Riečanová Z., 10.1016/S0165-0114(02)00141-0, Fuzzy Sets and Systems 136 (2003), 41–54 MR1978468DOI10.1016/S0165-0114(02)00141-0
  15. Riečanová Z., Distributive atomic effect algebras, Demonstratio Math. 36 (2003), 247–259 MR1984337
  16. Riečanová Z., 10.1023/A:1025775827938, Internat. J. Theor. Phys. 42 (2003), 1425–1433 MR2021221DOI10.1023/A:1025775827938
  17. Riečanová Z., Modular atomic effect algebras and the existence of subadditive states, Kybernetika 40 (2004), 459–468 MR2102364
  18. Schmidt J., 10.1007/BF01900297, Arch. Math. 17 (1956), 241–249 (1956) MR0084484DOI10.1007/BF01900297

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.