Semicopulas: characterizations and applicability

Fabrizio Durante; José Quesada-Molina; Carlo Sempi

Kybernetika (2006)

  • Volume: 42, Issue: 3, page 287-302
  • ISSN: 0023-5954

Abstract

top
We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.

How to cite

top

Durante, Fabrizio, Quesada-Molina, José, and Sempi, Carlo. "Semicopulas: characterizations and applicability." Kybernetika 42.3 (2006): 287-302. <http://eudml.org/doc/33806>.

@article{Durante2006,
abstract = {We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.},
author = {Durante, Fabrizio, Quesada-Molina, José, Sempi, Carlo},
journal = {Kybernetika},
keywords = {semicopula; quasi-copula; Lipschitz condition; aggregation operator; semicopula; quasi-copula; Lipschitz condition; aggregation operator},
language = {eng},
number = {3},
pages = {287-302},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Semicopulas: characterizations and applicability},
url = {http://eudml.org/doc/33806},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Durante, Fabrizio
AU - Quesada-Molina, José
AU - Sempi, Carlo
TI - Semicopulas: characterizations and applicability
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 3
SP - 287
EP - 302
AB - We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.
LA - eng
KW - semicopula; quasi-copula; Lipschitz condition; aggregation operator; semicopula; quasi-copula; Lipschitz condition; aggregation operator
UR - http://eudml.org/doc/33806
ER -

References

top
  1. Alsina C., Frank M. J., Schweizer B., 10.1007/s00010-003-2673-y, Aequationes Math. 66 (2003), 128–140 Zbl1077.39021MR2003460DOI10.1007/s00010-003-2673-y
  2. Alsina C., Nelsen R. B., Schweizer B., 10.1016/0167-7152(93)90001-Y, Statist. Probab. Lett. 17 (1993), 85–89 (1993) Zbl0798.60023MR1223530DOI10.1016/0167-7152(93)90001-Y
  3. Axler S., Bourdon, P., Ramey W., Harmonic Function Theory, (Graduate Texts in Mathematics 137.) Springer–Verlag, New York 2001 Zbl0959.31001MR1805196
  4. Baets B. De, Analytical solution methods for fuzzy relational equations, In: Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Chapter 6, Vol. 1, Kluwer Academic Publishers, Dordrecht 2000, pp. 291–340 Zbl0970.03044MR1890236
  5. Baets B. De, Meyer H. De, Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity, Fuzzy Sets and Systems 152 (2005), 249–270 Zbl1114.91031MR2138509
  6. Baets B. De, Meyer H. De, Schuymer, B. De, Jenei S., Cycle evaluation of transitivity of reciprocal relations, Soc. Choice Welfare. To appear 
  7. Schuymer B. De, Meyer, H. De, Baets B. De, On some forms of cycle-transitivity and their relation to commutative copulas, In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 178–182 
  8. Bassan B., Spizzichino F., 10.1016/j.jmva.2004.04.002, J. Multivariate Anal. 93 (2005), 313–339 Zbl1070.60015MR2162641DOI10.1016/j.jmva.2004.04.002
  9. Calvo T., Kolesárová A., Komorníková, M., Mesiar R., Aggregation operators: properties, classes and construction methods, In: Aggregation Operators. New Trends and Applications (T. Calvo, R. Mesiar, and G. Mayor, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–106 Zbl1039.03015MR1936383
  10. Denneberg D., Non-additive Measure and Integral, Kluwer Academic Publishers, Dordrecht 1994 Zbl0968.28009MR1320048
  11. Durante F., What is a semicopula? In: Proc, AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 51–56 
  12. Durante F., A new class of symmetric bivariate copulas, Preprint n. 19, Dipartimento di Matematica E. De Giorgi, Lecce, 2005 (19,) MR2311801
  13. Durante F., Mesiar, R., Sempi C., 10.1007/s00500-005-0523-7, Soft Computing 10 (2006), 490–494 Zbl1098.60016DOI10.1007/s00500-005-0523-7
  14. Durante F., Quesada-Molina J. J., Sempi C., A generalization of the Archimedean class of bivariate copulas, Ann. Inst. Statist. Math. (2006), to appear MR2388803
  15. Durante F., Sempi C., Semicopulæ, Kybernetika 41 (2005), 315–328 MR2181421
  16. Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C., 10.1006/jmva.1998.1809, J. Multivariate Anal. 69 (1999), 193–205 (1999) MR1703371DOI10.1006/jmva.1998.1809
  17. Ricci R. Ghiselli, Mesiar R., k -Lipschitz strict triangular norms, In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 1307–1312 
  18. Klement E. P., Mesiar, R., Pap E., Triangular Norms, Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
  19. Kolmogorov A. N., Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer–Verlag, Berlin 1933. Reprinted in: Foundations of the Theory of Probability. Chelsea, Bronxm NY 1950 (1933) Zbl0007.21601MR0494348
  20. Mesiarová A., k -Lipschitz aggregation operators, In: Proc. AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 89–92 
  21. Mesiarová A., Triangular norms and k -Lipschitz property, In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 922–926 
  22. Nelsen R. B., 10.1007/978-1-4757-3076-0, (Lecture Notes in Statistics 139.) Springer–Verlag, New York 1999 Zbl1152.62030MR1653203DOI10.1007/978-1-4757-3076-0
  23. Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.jmva.2003.09.002, J. Multivariate Anal. 90 (2004), 348–358 Zbl1057.62038MR2081783DOI10.1016/j.jmva.2003.09.002
  24. Nelsen R. B., Copulas and quasi-copulas: an introduction to their properties and applications, In: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 Zbl1079.60021MR2165243
  25. Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.spl.2003.09.010, Statist. Probab. Lett. 66 (2004), 315–325 Zbl1102.62054MR2045476DOI10.1016/j.spl.2003.09.010
  26. Scarsini M., Copulæ of capacities on product spaces, In: Distribution Functions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), Institute of Mathematical Statistics (Lecture Notes – Monograph Series Volume 28), Hayward 1996, pp. 307–318 (1996) MR1485540
  27. Schweizer B., Sklar A., Probabilistic Metric Spaces, North Holland, New York 1983. 2nd edition: Dover Publications, Mineola, New York 2005 (1983) Zbl0546.60010MR0790314
  28. Stromberg K. R., An Introduction to Classical Real Analysis, Chapman & Hall, London 1981 Zbl0454.26001MR0604364

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.