Semicopulas: characterizations and applicability
Fabrizio Durante; José Quesada-Molina; Carlo Sempi
Kybernetika (2006)
- Volume: 42, Issue: 3, page 287-302
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDurante, Fabrizio, Quesada-Molina, José, and Sempi, Carlo. "Semicopulas: characterizations and applicability." Kybernetika 42.3 (2006): 287-302. <http://eudml.org/doc/33806>.
@article{Durante2006,
abstract = {We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.},
author = {Durante, Fabrizio, Quesada-Molina, José, Sempi, Carlo},
journal = {Kybernetika},
keywords = {semicopula; quasi-copula; Lipschitz condition; aggregation operator; semicopula; quasi-copula; Lipschitz condition; aggregation operator},
language = {eng},
number = {3},
pages = {287-302},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Semicopulas: characterizations and applicability},
url = {http://eudml.org/doc/33806},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Durante, Fabrizio
AU - Quesada-Molina, José
AU - Sempi, Carlo
TI - Semicopulas: characterizations and applicability
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 3
SP - 287
EP - 302
AB - We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.
LA - eng
KW - semicopula; quasi-copula; Lipschitz condition; aggregation operator; semicopula; quasi-copula; Lipschitz condition; aggregation operator
UR - http://eudml.org/doc/33806
ER -
References
top- Alsina C., Frank M. J., Schweizer B., 10.1007/s00010-003-2673-y, Aequationes Math. 66 (2003), 128–140 Zbl1077.39021MR2003460DOI10.1007/s00010-003-2673-y
- Alsina C., Nelsen R. B., Schweizer B., 10.1016/0167-7152(93)90001-Y, Statist. Probab. Lett. 17 (1993), 85–89 (1993) Zbl0798.60023MR1223530DOI10.1016/0167-7152(93)90001-Y
- Axler S., Bourdon, P., Ramey W., Harmonic Function Theory, (Graduate Texts in Mathematics 137.) Springer–Verlag, New York 2001 Zbl0959.31001MR1805196
- Baets B. De, Analytical solution methods for fuzzy relational equations, In: Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Chapter 6, Vol. 1, Kluwer Academic Publishers, Dordrecht 2000, pp. 291–340 Zbl0970.03044MR1890236
- Baets B. De, Meyer H. De, Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity, Fuzzy Sets and Systems 152 (2005), 249–270 Zbl1114.91031MR2138509
- Baets B. De, Meyer H. De, Schuymer, B. De, Jenei S., Cycle evaluation of transitivity of reciprocal relations, Soc. Choice Welfare. To appear
- Schuymer B. De, Meyer, H. De, Baets B. De, On some forms of cycle-transitivity and their relation to commutative copulas, In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 178–182
- Bassan B., Spizzichino F., 10.1016/j.jmva.2004.04.002, J. Multivariate Anal. 93 (2005), 313–339 Zbl1070.60015MR2162641DOI10.1016/j.jmva.2004.04.002
- Calvo T., Kolesárová A., Komorníková, M., Mesiar R., Aggregation operators: properties, classes and construction methods, In: Aggregation Operators. New Trends and Applications (T. Calvo, R. Mesiar, and G. Mayor, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–106 Zbl1039.03015MR1936383
- Denneberg D., Non-additive Measure and Integral, Kluwer Academic Publishers, Dordrecht 1994 Zbl0968.28009MR1320048
- Durante F., What is a semicopula? In: Proc, AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 51–56
- Durante F., A new class of symmetric bivariate copulas, Preprint n. 19, Dipartimento di Matematica E. De Giorgi, Lecce, 2005 (19,) MR2311801
- Durante F., Mesiar, R., Sempi C., 10.1007/s00500-005-0523-7, Soft Computing 10 (2006), 490–494 Zbl1098.60016DOI10.1007/s00500-005-0523-7
- Durante F., Quesada-Molina J. J., Sempi C., A generalization of the Archimedean class of bivariate copulas, Ann. Inst. Statist. Math. (2006), to appear MR2388803
- Durante F., Sempi C., Semicopulæ, Kybernetika 41 (2005), 315–328 MR2181421
- Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C., 10.1006/jmva.1998.1809, J. Multivariate Anal. 69 (1999), 193–205 (1999) MR1703371DOI10.1006/jmva.1998.1809
- Ricci R. Ghiselli, Mesiar R., -Lipschitz strict triangular norms, In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 1307–1312
- Klement E. P., Mesiar, R., Pap E., Triangular Norms, Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
- Kolmogorov A. N., Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer–Verlag, Berlin 1933. Reprinted in: Foundations of the Theory of Probability. Chelsea, Bronxm NY 1950 (1933) Zbl0007.21601MR0494348
- Mesiarová A., -Lipschitz aggregation operators, In: Proc. AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 89–92
- Mesiarová A., Triangular norms and -Lipschitz property, In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 922–926
- Nelsen R. B., 10.1007/978-1-4757-3076-0, (Lecture Notes in Statistics 139.) Springer–Verlag, New York 1999 Zbl1152.62030MR1653203DOI10.1007/978-1-4757-3076-0
- Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.jmva.2003.09.002, J. Multivariate Anal. 90 (2004), 348–358 Zbl1057.62038MR2081783DOI10.1016/j.jmva.2003.09.002
- Nelsen R. B., Copulas and quasi-copulas: an introduction to their properties and applications, In: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 Zbl1079.60021MR2165243
- Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.spl.2003.09.010, Statist. Probab. Lett. 66 (2004), 315–325 Zbl1102.62054MR2045476DOI10.1016/j.spl.2003.09.010
- Scarsini M., Copulæ of capacities on product spaces, In: Distribution Functions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), Institute of Mathematical Statistics (Lecture Notes – Monograph Series Volume 28), Hayward 1996, pp. 307–318 (1996) MR1485540
- Schweizer B., Sklar A., Probabilistic Metric Spaces, North Holland, New York 1983. 2nd edition: Dover Publications, Mineola, New York 2005 (1983) Zbl0546.60010MR0790314
- Stromberg K. R., An Introduction to Classical Real Analysis, Chapman & Hall, London 1981 Zbl0454.26001MR0604364
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.