A contour view on uninorm properties

Koen C. Maes; Bernard De Baets

Kybernetika (2006)

  • Volume: 42, Issue: 3, page 303-318
  • ISSN: 0023-5954

Abstract

top
Any given increasing [ 0 , 1 ] 2 [ 0 , 1 ] function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.

How to cite

top

Maes, Koen C., and De Baets, Bernard. "A contour view on uninorm properties." Kybernetika 42.3 (2006): 303-318. <http://eudml.org/doc/33807>.

@article{Maes2006,
abstract = {Any given increasing $[0,1]^2\rightarrow [0,1]$ function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.},
author = {Maes, Koen C., De Baets, Bernard},
journal = {Kybernetika},
keywords = {uninorm; Contour line; Orthosymmetry; Portation law; Exchange principle; Contrapositive symmetry; Rotation invariance; Self quasi-inverse property; uninorm; contour line; orthosymmetry; portation law; exchange principle; contrapositive symmetry; rotation invariance},
language = {eng},
number = {3},
pages = {303-318},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A contour view on uninorm properties},
url = {http://eudml.org/doc/33807},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Maes, Koen C.
AU - De Baets, Bernard
TI - A contour view on uninorm properties
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 3
SP - 303
EP - 318
AB - Any given increasing $[0,1]^2\rightarrow [0,1]$ function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.
LA - eng
KW - uninorm; Contour line; Orthosymmetry; Portation law; Exchange principle; Contrapositive symmetry; Rotation invariance; Self quasi-inverse property; uninorm; contour line; orthosymmetry; portation law; exchange principle; contrapositive symmetry; rotation invariance
UR - http://eudml.org/doc/33807
ER -

References

top
  1. Birkhoff G., Lattice Theory, Third edition. (AMS Colloquium Publications, Vol. 25.) American Mathematical Society, Providence, Rhode Island 1967 Zbl0537.06001MR0227053
  2. Baets B. De, Coimplicators, the forgotten connectives, Tatra Mt. Math. Publ. 12 (1997), 229–240 (1997) Zbl0954.03029MR1607142
  3. Baets B. De, 10.1016/S0377-2217(98)00325-7, European J. Oper. Res. 118 (1999), 631–642 (1999) Zbl0933.03071DOI10.1016/S0377-2217(98)00325-7
  4. Baets B. De, Fodor J., 10.1007/s005000050057, Soft Computing 3 (1999), 89–100 (1999) DOI10.1007/s005000050057
  5. Baets B. De, Fodor J., van Melle’s combining function in MYCIN is a representable uninorm: An alternative proof, Fuzzy Sets and Systems 104 (1999), 133–136 (1999) Zbl0928.03060MR1685816
  6. Baets B. De, Mesiar R., Metrics and T-equalities, J. Math. Anal. Appl. 267 (2002), 331–347 MR1888022
  7. Dombi J., 10.1016/0377-2217(82)90227-2, European J. Oper. Res. 10 (1982), 282–293 (1982) MR0665480DOI10.1016/0377-2217(82)90227-2
  8. Fodor J., Roubens M., Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Academic Publishers, Dordrecht 1994 Zbl0827.90002
  9. Fodor J., Yager, R., Rybalov A., 10.1142/S0218488597000312, Internat. J. Uncertain Fuzz. 5 (1997), 411–427 (1997) Zbl1232.03015MR1471619DOI10.1142/S0218488597000312
  10. Golan J., The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, Addison–Wesley Longman Ltd., Essex 1992 Zbl0780.16036MR1163371
  11. Jenei S., Geometry of left-continuous t-norms with strong induced negations, Belg. J. Oper. Res. Statist. Comput. Sci. 38 (1998), 5–16 (1998) MR1774255
  12. Jenei S., 10.1080/11663081.2000.10510989, (I) Rotation construction. J. Appl. Non-Classical Logics 10 (2000), 83–92 Zbl1050.03505MR1826844DOI10.1080/11663081.2000.10510989
  13. Jenei S., 10.3166/jancl.11.351-366, (II) Rotation-annihilation construction. J. Appl. Non-Classical Logics 11 (2001), 351–366 Zbl1050.03505MR1916884DOI10.3166/jancl.11.351-366
  14. Jenei S., Structure of left-continuous triangular norms with strong induced negations, (III) Construction and decomposition. Fuzzy Sets and Systems 128 (2002), 197–208 Zbl1050.03505MR1908426
  15. Jenei S., How to construct left-continuous triangular norms – state of the art, Fuzzy Sets and Systems 143 (2004), 27–45 Zbl1040.03021MR2060271
  16. Jenei S., 10.1007/s00010-004-2759-1, Aequationes Math. 70 (2005), 177–188 Zbl1083.39023MR2167993DOI10.1007/s00010-004-2759-1
  17. Klement E. P., Mesiar, R., Pap E., Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms, Fuzzy Sets and Systems 104 (1999), 3–13 (1999) Zbl0953.26008MR1685803
  18. Klement E. P., Mesiar, R., Pap E., Triangular Norms, (Trends in Logic, Vol. 8.) Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
  19. Klement E. P., Mesiar, R., Pap E., 10.1142/S179300570500010X, New Mathematics and Natural Computation 1 (2005), 195–211 Zbl1081.26024MR2158962DOI10.1142/S179300570500010X
  20. Maes K. C., Baets B. De, Orthosymmetrical monotone functions, B. Belg. Math. Soc.-Sim., to appear Zbl1142.26007MR2327329
  21. Ruiz D., Torrens J., Residual implications and co-implications from idempotent uninorms, Kybernetika 40 (2004), 21–38 MR2068596
  22. Schweizer B., Sklar A., Probabilistic Metric Spaces, Elsevier Science, New York 1983 Zbl0546.60010MR0790314
  23. Yager R., Rybalov A., 10.1016/0165-0114(95)00133-6, Fuzzy Sets and Systems 80 (1996), 111–120 (1996) Zbl0871.04007MR1389951DOI10.1016/0165-0114(95)00133-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.