A contour view on uninorm properties
Koen C. Maes; Bernard De Baets
Kybernetika (2006)
- Volume: 42, Issue: 3, page 303-318
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMaes, Koen C., and De Baets, Bernard. "A contour view on uninorm properties." Kybernetika 42.3 (2006): 303-318. <http://eudml.org/doc/33807>.
@article{Maes2006,
abstract = {Any given increasing $[0,1]^2\rightarrow [0,1]$ function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.},
author = {Maes, Koen C., De Baets, Bernard},
journal = {Kybernetika},
keywords = {uninorm; Contour line; Orthosymmetry; Portation law; Exchange principle; Contrapositive symmetry; Rotation invariance; Self quasi-inverse property; uninorm; contour line; orthosymmetry; portation law; exchange principle; contrapositive symmetry; rotation invariance},
language = {eng},
number = {3},
pages = {303-318},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A contour view on uninorm properties},
url = {http://eudml.org/doc/33807},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Maes, Koen C.
AU - De Baets, Bernard
TI - A contour view on uninorm properties
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 3
SP - 303
EP - 318
AB - Any given increasing $[0,1]^2\rightarrow [0,1]$ function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.
LA - eng
KW - uninorm; Contour line; Orthosymmetry; Portation law; Exchange principle; Contrapositive symmetry; Rotation invariance; Self quasi-inverse property; uninorm; contour line; orthosymmetry; portation law; exchange principle; contrapositive symmetry; rotation invariance
UR - http://eudml.org/doc/33807
ER -
References
top- Birkhoff G., Lattice Theory, Third edition. (AMS Colloquium Publications, Vol. 25.) American Mathematical Society, Providence, Rhode Island 1967 Zbl0537.06001MR0227053
- Baets B. De, Coimplicators, the forgotten connectives, Tatra Mt. Math. Publ. 12 (1997), 229–240 (1997) Zbl0954.03029MR1607142
- Baets B. De, 10.1016/S0377-2217(98)00325-7, European J. Oper. Res. 118 (1999), 631–642 (1999) Zbl0933.03071DOI10.1016/S0377-2217(98)00325-7
- Baets B. De, Fodor J., 10.1007/s005000050057, Soft Computing 3 (1999), 89–100 (1999) DOI10.1007/s005000050057
- Baets B. De, Fodor J., van Melle’s combining function in MYCIN is a representable uninorm: An alternative proof, Fuzzy Sets and Systems 104 (1999), 133–136 (1999) Zbl0928.03060MR1685816
- Baets B. De, Mesiar R., Metrics and T-equalities, J. Math. Anal. Appl. 267 (2002), 331–347 MR1888022
- Dombi J., 10.1016/0377-2217(82)90227-2, European J. Oper. Res. 10 (1982), 282–293 (1982) MR0665480DOI10.1016/0377-2217(82)90227-2
- Fodor J., Roubens M., Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Academic Publishers, Dordrecht 1994 Zbl0827.90002
- Fodor J., Yager, R., Rybalov A., 10.1142/S0218488597000312, Internat. J. Uncertain Fuzz. 5 (1997), 411–427 (1997) Zbl1232.03015MR1471619DOI10.1142/S0218488597000312
- Golan J., The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, Addison–Wesley Longman Ltd., Essex 1992 Zbl0780.16036MR1163371
- Jenei S., Geometry of left-continuous t-norms with strong induced negations, Belg. J. Oper. Res. Statist. Comput. Sci. 38 (1998), 5–16 (1998) MR1774255
- Jenei S., 10.1080/11663081.2000.10510989, (I) Rotation construction. J. Appl. Non-Classical Logics 10 (2000), 83–92 Zbl1050.03505MR1826844DOI10.1080/11663081.2000.10510989
- Jenei S., 10.3166/jancl.11.351-366, (II) Rotation-annihilation construction. J. Appl. Non-Classical Logics 11 (2001), 351–366 Zbl1050.03505MR1916884DOI10.3166/jancl.11.351-366
- Jenei S., Structure of left-continuous triangular norms with strong induced negations, (III) Construction and decomposition. Fuzzy Sets and Systems 128 (2002), 197–208 Zbl1050.03505MR1908426
- Jenei S., How to construct left-continuous triangular norms – state of the art, Fuzzy Sets and Systems 143 (2004), 27–45 Zbl1040.03021MR2060271
- Jenei S., 10.1007/s00010-004-2759-1, Aequationes Math. 70 (2005), 177–188 Zbl1083.39023MR2167993DOI10.1007/s00010-004-2759-1
- Klement E. P., Mesiar, R., Pap E., Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms, Fuzzy Sets and Systems 104 (1999), 3–13 (1999) Zbl0953.26008MR1685803
- Klement E. P., Mesiar, R., Pap E., Triangular Norms, (Trends in Logic, Vol. 8.) Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
- Klement E. P., Mesiar, R., Pap E., 10.1142/S179300570500010X, New Mathematics and Natural Computation 1 (2005), 195–211 Zbl1081.26024MR2158962DOI10.1142/S179300570500010X
- Maes K. C., Baets B. De, Orthosymmetrical monotone functions, B. Belg. Math. Soc.-Sim., to appear Zbl1142.26007MR2327329
- Ruiz D., Torrens J., Residual implications and co-implications from idempotent uninorms, Kybernetika 40 (2004), 21–38 MR2068596
- Schweizer B., Sklar A., Probabilistic Metric Spaces, Elsevier Science, New York 1983 Zbl0546.60010MR0790314
- Yager R., Rybalov A., 10.1016/0165-0114(95)00133-6, Fuzzy Sets and Systems 80 (1996), 111–120 (1996) Zbl0871.04007MR1389951DOI10.1016/0165-0114(95)00133-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.