The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Any given increasing function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.
Let be a continuous, piecewise-polynomial function. The Pierce-Birkhoff conjecture (1956) is that any such is representable in the form , for some finite collection of polynomials . (A simple example is .) In 1984, L. Mahé and, independently, G. Efroymson, proved this for ; it remains open for . In this paper we prove an analogous result for “generalized polynomials” (also known as signomials), i.e., where the exponents are allowed to be arbitrary real numbers, and not just natural numbers;...
We prove necessary and sufficient conditions for the validity of the classical chain rule in the Sobolev space and in the space of functions of bounded
variation.
Currently displaying 1 –
20 of
44