Gravimetric quasigeoid in Slovakia by the finite element method

Zuzana Fašková; Karol Mikula; Róbert Čunderlík; Juraj Janák; Michal Šprlák

Kybernetika (2007)

  • Volume: 43, Issue: 6, page 789-796
  • ISSN: 0023-5954

Abstract

top
The paper presents the solution to the geodetic boundary value problem by the finite element method in area of Slovak Republic. Generally, we have made two numerical experiments. In the first one, Neumann BC in the form of gravity disturbances generated from EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly from EGM-96. In the second one, Neumann BC is computed from gravity measurements and the solution is compared to the quasigeoidal heights obtained by GPS/leveling method.

How to cite

top

Fašková, Zuzana, et al. "Gravimetric quasigeoid in Slovakia by the finite element method." Kybernetika 43.6 (2007): 789-796. <http://eudml.org/doc/33896>.

@article{Fašková2007,
abstract = {The paper presents the solution to the geodetic boundary value problem by the finite element method in area of Slovak Republic. Generally, we have made two numerical experiments. In the first one, Neumann BC in the form of gravity disturbances generated from EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly from EGM-96. In the second one, Neumann BC is computed from gravity measurements and the solution is compared to the quasigeoidal heights obtained by GPS/leveling method.},
author = {Fašková, Zuzana, Mikula, Karol, Čunderlík, Róbert, Janák, Juraj, Šprlák, Michal},
journal = {Kybernetika},
keywords = {finite element method; geodetic boundary value problem; ANSYS},
language = {eng},
number = {6},
pages = {789-796},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Gravimetric quasigeoid in Slovakia by the finite element method},
url = {http://eudml.org/doc/33896},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Fašková, Zuzana
AU - Mikula, Karol
AU - Čunderlík, Róbert
AU - Janák, Juraj
AU - Šprlák, Michal
TI - Gravimetric quasigeoid in Slovakia by the finite element method
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 6
SP - 789
EP - 796
AB - The paper presents the solution to the geodetic boundary value problem by the finite element method in area of Slovak Republic. Generally, we have made two numerical experiments. In the first one, Neumann BC in the form of gravity disturbances generated from EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly from EGM-96. In the second one, Neumann BC is computed from gravity measurements and the solution is compared to the quasigeoidal heights obtained by GPS/leveling method.
LA - eng
KW - finite element method; geodetic boundary value problem; ANSYS
UR - http://eudml.org/doc/33896
ER -

References

top
  1. ANSYS, tutorial, online, www, ansys.stuba.sk 
  2. Brenner S. C., Scott L. R., The Mathematical Theory of Finite Element Methods, Second edition. Springer–Verlag, New York 2002 Zbl1135.65042MR1894376
  3. Čunderlík R., Mikula, K., Mojzeš M., The boundary element method applied to the determination of the global quasigeoid, In: Proc. ALGORITMY 2000, pp. 301–308 Zbl1056.86500
  4. Čunderlík R., Mikula, K., Mojzeš M., A comparison of the variational solution to the Neumann geodetic boundary value problem with the geopotential model EGM-96, Contributions to Geophysics and Geodesy 34 (2004), 3, 209–225 
  5. Čunderlík R., The Boundary Element Method Applied to the Neumann Geodetic Boundary Value Problem, Ph.. Thesis. SvF STU, Bratislava 2004 
  6. Čunderlík R., Mikula K., Boundary Element Method for the gravity field modeling in the Himalayas, Slovak Journal of Civil Engineering 13 (2005), 4, 13–18 
  7. Klobušiak M., Pecár J., Model and algorithm of effective processing of gravity measurements performed with a group of absolute and relative gravimeters, GaKO 50/92, No. 4–5 (2004), 99–110 
  8. Mojzeš M., Janák J., New gravimetric quasigeoid of Slovakia, Bollettino Di Geofisica Teorica Ed Applicata 40 (1999), 3–4, 211–217 (1999) 
  9. Mojzeš M., Janák J., Gravimetric model of Slovak quasigeoid, In: Second Continental Workshop on the Geoid in Europe, Budapest 1998 
  10. Moritz H., Advanced Physical Geodesy, Helbert Wichmann Verlag, Karlsruhe 1980 
  11. Šprlák M., Janák J., Gravity field modeling, New program for gravity field modeling by spherical harmonic functions. GaKO 1 (2006), 1–8 
  12. Reddy J. N., An Introduction to The Finite Element Method, Second edition. Mc Graw-Hill, Singapore 1993 Zbl0633.65104
  13. Rektorys K., Variational Methods in Engineering and in Mathematical Physics (in Czech), SNTL, Prague 1974 
  14. Tscherning C. C., Knudsen, P., Forsberg R., Description of the GRAVSOFT Package, Geophysical Institute, University of Copenhagen, Technical Report, 1991 
  15. Vaníček P., Krakiwsky E., Geodesy – The Concepts, North–Holland, Amsterdam – New York – Oxford 1982 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.