On the tangential velocity arising in a crystalline approximation of evolving plane curves

Shigetoshi Yazaki

Kybernetika (2007)

  • Volume: 43, Issue: 6, page 913-918
  • ISSN: 0023-5954

Abstract

top
In a crystalline algorithm, a tangential velocity is used implicitly. In this short note, it is specified for the case of evolving plane curves, and is characterized by using the intrinsic heat equation.

How to cite

top

Yazaki, Shigetoshi. "On the tangential velocity arising in a crystalline approximation of evolving plane curves." Kybernetika 43.6 (2007): 913-918. <http://eudml.org/doc/33907>.

@article{Yazaki2007,
abstract = {In a crystalline algorithm, a tangential velocity is used implicitly. In this short note, it is specified for the case of evolving plane curves, and is characterized by using the intrinsic heat equation.},
author = {Yazaki, Shigetoshi},
journal = {Kybernetika},
keywords = {tangential velocity; intrinsic heat equation; crystalline algorithm; admissible polygonal curve; tangential velocity; intrinsic heat equation; crystalline algorithm; admissible polygonal curve},
language = {eng},
number = {6},
pages = {913-918},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the tangential velocity arising in a crystalline approximation of evolving plane curves},
url = {http://eudml.org/doc/33907},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Yazaki, Shigetoshi
TI - On the tangential velocity arising in a crystalline approximation of evolving plane curves
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 6
SP - 913
EP - 918
AB - In a crystalline algorithm, a tangential velocity is used implicitly. In this short note, it is specified for the case of evolving plane curves, and is characterized by using the intrinsic heat equation.
LA - eng
KW - tangential velocity; intrinsic heat equation; crystalline algorithm; admissible polygonal curve; tangential velocity; intrinsic heat equation; crystalline algorithm; admissible polygonal curve
UR - http://eudml.org/doc/33907
ER -

References

top
  1. Angenent S., Gurtin M. E., 10.1007/BF01041068, Evolution of an isothermal interface. Arch. Rational Mech. Anal. 108 (1989), 323–391 (1989) MR1013461DOI10.1007/BF01041068
  2. Deckelnick K., 10.1007/s005260050076, Calc. Var. Partial Differential Equations 5 (1997), 489–510 (1997) Zbl0990.35076MR1473305DOI10.1007/s005260050076
  3. .Dziuk, G, 10.1142/S0218202594000339, Math. Models Methods Appl. Sci. 4 (1994), 589–606 (1994) Zbl0811.65112MR1291140DOI10.1142/S0218202594000339
  4. Giga Y., Anisotropic curvature effects in interface dynamics, Sūgaku 52 (2000), 113–127; English transl., Sugaku Expositions 16 (2003), 135–152 MR2019167
  5. Giga M.-H., Giga Y., Crystalline and level set flow – convergence of a crystalline algorithm for a general anisotropic curvature flow in the plane, GAKUTO Internat. Ser. Math. Sci. Appl. 13 (2000), 64–79 Zbl0957.35122MR1793023
  6. Gurtin M. E., Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford 1993 Zbl0787.73004MR1402243
  7. Hirota C., Ishiwata, T., Yazaki S., Numerical study and examples on singularities of solutions to anisotropic crystalline curvature flows of nonconvex polygonal curves, In: Advanced Studies in Pure Mathematics (ASPM); Proc. MSJ-IRI 2005 “Asymptotic Analysis and Singularity”, Sendai 2005 (to appear) Zbl1143.35308MR2387254
  8. Hontani H., Giga M.-H., Giga, Y., Deguchi K., 10.1016/j.dam.2004.09.015, Discrete Appl. Math. 147 (2005), 265–285 Zbl1117.65036MR2127078DOI10.1016/j.dam.2004.09.015
  9. Ishiwata T., Ushijima T. K., Yagisita, H., Yazaki S., Two examples of nonconvex self-similar solution curves for a crystalline curvature flow, Proc. Japan Academy, Ser. A 80 (2004), 8, 151–154 Zbl1077.53054MR2099341
  10. Kimura M., 10.1016/0893-9659(94)90056-6, Appl. Math. Letters 7 (1994), 69–73 (1994) Zbl0792.65100MR1349897DOI10.1016/0893-9659(94)90056-6
  11. Mikula K., Ševčovič D., 10.1016/S0168-9274(98)00130-5, Appl. Numer. Math. 31 (1999), 191–207 (1999) Zbl0938.65145MR1708959DOI10.1016/S0168-9274(98)00130-5
  12. Mikula K., Ševčovič D., 10.1137/S0036139999359288, SIAM J. Appl. Math. 61 (2001), 1473–1501 Zbl0980.35078MR1824511DOI10.1137/S0036139999359288
  13. Taylor J. E., Constructions and conjectures in crystalline nondifferential geometry, In: Proc. Conference on Differential Geometry, Rio de Janeiro, Pitman Monographs Surveys Pure Appl. Math. 52 (1991), pp. 321–336, Pitman, London 1991 (1991) Zbl0725.53011MR1173051
  14. Taylor J. E., Motion of curves by crystalline curvature, including triple junctions and boundary points, Diff. Geom.: Partial Diff. Eqs. on Manifolds (Los Angeles 1990), Proc. Sympos. Pure Math., 54 (1993), Part I, pp, 417–438, AMS, Providence (1990) MR1216599
  15. Taylor J. E., Cahn, J., Handwerker C., 10.1016/0956-7151(92)90090-2, Acta Metall. 40 (1992), 1443–1474 (1992) DOI10.1016/0956-7151(92)90090-2
  16. Ushijima T. K., Yagisita H., Approximation of the Gauss curvature flow by a three-dimensional crystalline motion, In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005; Kuju Training Center, Oita, Japan, September 15–18, 2005, COE Lecture Note 3, Faculty of Mathematics, Kyushu University (M. Beneš, M. Kimura, and T. Nakaki, eds.), 2006, pp. 139–145 Zbl1145.53051MR2279054
  17. Ushijima T. K., Yagisita H., 10.1007/BF03167494, Japan J. Indust. Appl. Math. 22 (2005), 443–459 Zbl1089.53046MR2179771DOI10.1007/BF03167494
  18. Ushijima T. K., Yazaki S., 10.1016/j.cam.2003.08.041, Journal of Comput. and Appl. Math. 166 (2004), 427–452 Zbl1052.65082MR2041191DOI10.1016/j.cam.2003.08.041
  19. Yazaki S., 10.2977/prims/1199403812, Publ. Res. Inst. Math. Sci. 43 (2007), 155–170 Zbl1132.53036MR2317117DOI10.2977/prims/1199403812

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.