On the tangential velocity arising in a crystalline approximation of evolving plane curves
Kybernetika (2007)
- Volume: 43, Issue: 6, page 913-918
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topYazaki, Shigetoshi. "On the tangential velocity arising in a crystalline approximation of evolving plane curves." Kybernetika 43.6 (2007): 913-918. <http://eudml.org/doc/33907>.
@article{Yazaki2007,
abstract = {In a crystalline algorithm, a tangential velocity is used implicitly. In this short note, it is specified for the case of evolving plane curves, and is characterized by using the intrinsic heat equation.},
author = {Yazaki, Shigetoshi},
journal = {Kybernetika},
keywords = {tangential velocity; intrinsic heat equation; crystalline algorithm; admissible polygonal curve; tangential velocity; intrinsic heat equation; crystalline algorithm; admissible polygonal curve},
language = {eng},
number = {6},
pages = {913-918},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the tangential velocity arising in a crystalline approximation of evolving plane curves},
url = {http://eudml.org/doc/33907},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Yazaki, Shigetoshi
TI - On the tangential velocity arising in a crystalline approximation of evolving plane curves
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 6
SP - 913
EP - 918
AB - In a crystalline algorithm, a tangential velocity is used implicitly. In this short note, it is specified for the case of evolving plane curves, and is characterized by using the intrinsic heat equation.
LA - eng
KW - tangential velocity; intrinsic heat equation; crystalline algorithm; admissible polygonal curve; tangential velocity; intrinsic heat equation; crystalline algorithm; admissible polygonal curve
UR - http://eudml.org/doc/33907
ER -
References
top- Angenent S., Gurtin M. E., 10.1007/BF01041068, Evolution of an isothermal interface. Arch. Rational Mech. Anal. 108 (1989), 323–391 (1989) MR1013461DOI10.1007/BF01041068
- Deckelnick K., 10.1007/s005260050076, Calc. Var. Partial Differential Equations 5 (1997), 489–510 (1997) Zbl0990.35076MR1473305DOI10.1007/s005260050076
- .Dziuk, G, 10.1142/S0218202594000339, Math. Models Methods Appl. Sci. 4 (1994), 589–606 (1994) Zbl0811.65112MR1291140DOI10.1142/S0218202594000339
- Giga Y., Anisotropic curvature effects in interface dynamics, Sūgaku 52 (2000), 113–127; English transl., Sugaku Expositions 16 (2003), 135–152 MR2019167
- Giga M.-H., Giga Y., Crystalline and level set flow – convergence of a crystalline algorithm for a general anisotropic curvature flow in the plane, GAKUTO Internat. Ser. Math. Sci. Appl. 13 (2000), 64–79 Zbl0957.35122MR1793023
- Gurtin M. E., Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford 1993 Zbl0787.73004MR1402243
- Hirota C., Ishiwata, T., Yazaki S., Numerical study and examples on singularities of solutions to anisotropic crystalline curvature flows of nonconvex polygonal curves, In: Advanced Studies in Pure Mathematics (ASPM); Proc. MSJ-IRI 2005 “Asymptotic Analysis and Singularity”, Sendai 2005 (to appear) Zbl1143.35308MR2387254
- Hontani H., Giga M.-H., Giga, Y., Deguchi K., 10.1016/j.dam.2004.09.015, Discrete Appl. Math. 147 (2005), 265–285 Zbl1117.65036MR2127078DOI10.1016/j.dam.2004.09.015
- Ishiwata T., Ushijima T. K., Yagisita, H., Yazaki S., Two examples of nonconvex self-similar solution curves for a crystalline curvature flow, Proc. Japan Academy, Ser. A 80 (2004), 8, 151–154 Zbl1077.53054MR2099341
- Kimura M., 10.1016/0893-9659(94)90056-6, Appl. Math. Letters 7 (1994), 69–73 (1994) Zbl0792.65100MR1349897DOI10.1016/0893-9659(94)90056-6
- Mikula K., Ševčovič D., 10.1016/S0168-9274(98)00130-5, Appl. Numer. Math. 31 (1999), 191–207 (1999) Zbl0938.65145MR1708959DOI10.1016/S0168-9274(98)00130-5
- Mikula K., Ševčovič D., 10.1137/S0036139999359288, SIAM J. Appl. Math. 61 (2001), 1473–1501 Zbl0980.35078MR1824511DOI10.1137/S0036139999359288
- Taylor J. E., Constructions and conjectures in crystalline nondifferential geometry, In: Proc. Conference on Differential Geometry, Rio de Janeiro, Pitman Monographs Surveys Pure Appl. Math. 52 (1991), pp. 321–336, Pitman, London 1991 (1991) Zbl0725.53011MR1173051
- Taylor J. E., Motion of curves by crystalline curvature, including triple junctions and boundary points, Diff. Geom.: Partial Diff. Eqs. on Manifolds (Los Angeles 1990), Proc. Sympos. Pure Math., 54 (1993), Part I, pp, 417–438, AMS, Providence (1990) MR1216599
- Taylor J. E., Cahn, J., Handwerker C., 10.1016/0956-7151(92)90090-2, Acta Metall. 40 (1992), 1443–1474 (1992) DOI10.1016/0956-7151(92)90090-2
- Ushijima T. K., Yagisita H., Approximation of the Gauss curvature flow by a three-dimensional crystalline motion, In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005; Kuju Training Center, Oita, Japan, September 15–18, 2005, COE Lecture Note 3, Faculty of Mathematics, Kyushu University (M. Beneš, M. Kimura, and T. Nakaki, eds.), 2006, pp. 139–145 Zbl1145.53051MR2279054
- Ushijima T. K., Yagisita H., 10.1007/BF03167494, Japan J. Indust. Appl. Math. 22 (2005), 443–459 Zbl1089.53046MR2179771DOI10.1007/BF03167494
- Ushijima T. K., Yazaki S., 10.1016/j.cam.2003.08.041, Journal of Comput. and Appl. Math. 166 (2004), 427–452 Zbl1052.65082MR2041191DOI10.1016/j.cam.2003.08.041
- Yazaki S., 10.2977/prims/1199403812, Publ. Res. Inst. Math. Sci. 43 (2007), 155–170 Zbl1132.53036MR2317117DOI10.2977/prims/1199403812
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.