On entropies for random partitions of the unit segment

Milena Bieniek; Dominik Szynal

Kybernetika (2008)

  • Volume: 44, Issue: 1, page 75-94
  • ISSN: 0023-5954

Abstract

top
We prove the complete convergence of Shannon’s, paired, genetic and α-entropy for random partitions of the unit segment. We also derive exact expressions for expectations and variances of the above entropies using special functions.

How to cite

top

Bieniek, Milena, and Szynal, Dominik. "On entropies for random partitions of the unit segment." Kybernetika 44.1 (2008): 75-94. <http://eudml.org/doc/33914>.

@article{Bieniek2008,
abstract = {We prove the complete convergence of Shannon’s, paired, genetic and α-entropy for random partitions of the unit segment. We also derive exact expressions for expectations and variances of the above entropies using special functions.},
author = {Bieniek, Milena, Szynal, Dominik},
journal = {Kybernetika},
keywords = {genetic entropy; α-entropy; random partitions; complete convergence},
language = {eng},
number = {1},
pages = {75-94},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On entropies for random partitions of the unit segment},
url = {http://eudml.org/doc/33914},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Bieniek, Milena
AU - Szynal, Dominik
TI - On entropies for random partitions of the unit segment
JO - Kybernetika
PY - 2008
PB - Institute of Information Theory and Automation AS CR
VL - 44
IS - 1
SP - 75
EP - 94
AB - We prove the complete convergence of Shannon’s, paired, genetic and α-entropy for random partitions of the unit segment. We also derive exact expressions for expectations and variances of the above entropies using special functions.
LA - eng
KW - genetic entropy; α-entropy; random partitions; complete convergence
UR - http://eudml.org/doc/33914
ER -

References

top
  1. Baum L. E., Katz M., Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1968), 108–123 (1968) MR0198524
  2. Bieniek M., Szynal D., A contribution to results on random partitions of the segment, Internat. J. Pure and Appl. Math. 13 (2004), 3, 337–378 Zbl1059.62051MR2057117
  3. Burbea N., Rao N., Entropy differential metrics and divergence measures in probability spaces: a unified approach, J. Multivariate Anal. 12 (1982), 575–596 (1982) MR0680530
  4. Darling D. A., On a class of problems related to the random division of an interval, Ann. Math. Statist. 24 (1953), 239–253 (1953) Zbl0053.09902MR0058891
  5. Erdős P., On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), 286–291 (1949) MR0030714
  6. Feller W., An Introduction to Probability Theory and its Applications, Vol. II. Wiley, New York 1966 Zbl0598.60003MR0210154
  7. Goldstein S., On entropy of random partitions of the segment [ 0 , 1 ] , Bull. Soc. Sci. Lett. Łódź XXIV 4 (1974), 1–7 (1974) MR0448500
  8. Gradstein I. S., Ryzyk I. M., Tables of Integrals, Sums, Series and Products, Fourth edition. Academic Press, New York – London 1965 
  9. Graham R. L., Knuth D. E., Patashnik O., Concrete Mathematics, Addison–Wesley Publishing Company Advanced Book Program, Reading, MA 1989 Zbl0836.00001MR1001562
  10. Ekstörm M., Sum-functions of spacings of increasing order, J. Statist. Plann. Inference 136 (2006), 2535–2546 MR2279820
  11. Hall P., Limit theorems for sums of general functions of m -spacings, Math. Proc. Cambridge Philos. Soc. 96 (1984), 517–532 (1984) Zbl0559.62013MR0757846
  12. Hall P., On power distributional tests based on sample spacings, J. Multivariate Anal. 19 (1986), 201–224 (1986) MR0853053
  13. Hansen E. R., A Table of Series and Products, Prentice-Hall, Englewood Clifts, N. J. 1975 Zbl0438.00001
  14. Havrda J., Charvát F., Quantification method in classification process: Concept of structural α -entropy, Kybernetika 3 (1967), 30–35 (1967) MR0209067
  15. Heyde C. C., A suplement to the strong law of large numbers, J. Appl. Probab. 12 (1975), 173–175 (1975) MR0368116
  16. Hsu P. L., Robbins H., Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 25–31 (1947) Zbl0030.20101MR0019852
  17. Latter B. D. H., Measures of genetic distance between indviduals and populations, Publ. Univ. Hawai, Honolulu, Genetic Structure of Populations (1973), 27–39 (1973) 
  18. Menendez M. L., Morales D., Pardo, L., Salicrú M., Asymptotic distribution of { h , φ } -entropies, Comm. Statist. – Theory Methods 22 (1993), 7, 2015–2031 (1993) MR1238377
  19. Misra N., A new test if uniformity based on overlapping sample spacings, Comm. Statist. – Theory Methods 30 (2001), 7, 1435–1470 MR1861865
  20. Renyi A., New nonadditive measures of entropy for discrete probability distributions, In: Proc. 4th Berkeley Symp. Math. Statist. and Prob. Vol. 1, 1961, pp. 547–561 (1961) MR0132570
  21. Shannon C. E., A mathematical theory of communications, Bell System Tech. J. 27 (1948), 379–425, 623–656 (1948) MR0026286
  22. Shao Y., Jimenez R., Entropy for random partitons and its applications, J. Theoret. Probab. 11 (1998), 417–433 (1998) MR1622579
  23. Slud E., Entropy and maximal spacings for random partitions, Z. Warsch. verw. Gebiete 41 (1978), 341–352 (1978) Zbl0353.60019MR0488242
  24. Temme N. M., Special Functions: An Introduction to the Classical Functions of Mathematical Physics, Wiley, New York 1996 Zbl0856.33001MR1376370
  25. Srivastava H. M., Tu S.-T., Wu T.-C., Some combinatorial series identities associated with the Digamma function and harmonic numbers, Appl. Math. Lett. 13 (2000), 101–106 Zbl0953.33001MR1755751

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.