Partial generalized synchronization theorems of differential and discrete systems

Jianyi Jing; Lequan Min; Geng Zhao

Kybernetika (2008)

  • Volume: 44, Issue: 4, page 511-521
  • ISSN: 0023-5954

Abstract

top
This paper presents two theorems for designing controllers to achieve directional partial generalized synchronization (PGS) of two independent (chaotic) differential equation systems or two independent (chaotic) discrete systems. Two numerical simulation examples are given to illustrate the effectiveness of the proposed theorems. It can be expected that these theorems provide new tools for understanding and studying PGS phenomena and information encryption.

How to cite

top

Jing, Jianyi, Min, Lequan, and Zhao, Geng. "Partial generalized synchronization theorems of differential and discrete systems." Kybernetika 44.4 (2008): 511-521. <http://eudml.org/doc/33946>.

@article{Jing2008,
abstract = {This paper presents two theorems for designing controllers to achieve directional partial generalized synchronization (PGS) of two independent (chaotic) differential equation systems or two independent (chaotic) discrete systems. Two numerical simulation examples are given to illustrate the effectiveness of the proposed theorems. It can be expected that these theorems provide new tools for understanding and studying PGS phenomena and information encryption.},
author = {Jing, Jianyi, Min, Lequan, Zhao, Geng},
journal = {Kybernetika},
keywords = {partial generalized synchronization; differential system; discrete system; partial generalized synchronization; differential system; discrete system},
language = {eng},
number = {4},
pages = {511-521},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Partial generalized synchronization theorems of differential and discrete systems},
url = {http://eudml.org/doc/33946},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Jing, Jianyi
AU - Min, Lequan
AU - Zhao, Geng
TI - Partial generalized synchronization theorems of differential and discrete systems
JO - Kybernetika
PY - 2008
PB - Institute of Information Theory and Automation AS CR
VL - 44
IS - 4
SP - 511
EP - 521
AB - This paper presents two theorems for designing controllers to achieve directional partial generalized synchronization (PGS) of two independent (chaotic) differential equation systems or two independent (chaotic) discrete systems. Two numerical simulation examples are given to illustrate the effectiveness of the proposed theorems. It can be expected that these theorems provide new tools for understanding and studying PGS phenomena and information encryption.
LA - eng
KW - partial generalized synchronization; differential system; discrete system; partial generalized synchronization; differential system; discrete system
UR - http://eudml.org/doc/33946
ER -

References

top
  1. Afraimovich V. S., Verichev N. N., Rabinovich M. I., Stochastically synchronized oscillation in dissipative systems, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 29 (1986), 1050–1060 (1986) MR0877439
  2. Agiza H. N., Yassen M. T., 10.1016/S0375-9601(00)00777-5, Phys. Lett. A 278 (2000), 191–197 MR1827067DOI10.1016/S0375-9601(00)00777-5
  3. Blekman I. I., Fradkov A. I., Nijmeijer, H., Pogromsky A. Y., 10.1016/S0167-6911(97)00047-9, Systems Control Lett. 31 (1997), 299–305 (1997) MR1482331DOI10.1016/S0167-6911(97)00047-9
  4. Celikovský S., Chen G., 10.1109/TAC.2004.841135, IEEE Trans. Automat. Control 50 (2005), 76–82 MR2110810DOI10.1109/TAC.2004.841135
  5. Chen G., Dong X., From Chaos to Order: Methodologies, Perspectives, and Applications, World Scientific, Singapore 1998 Zbl0908.93005MR1642791
  6. Chen G., Mao, Y., Chui C., 10.1016/j.chaos.2003.12.022, Chaos, Solitons and Fractals 21 (2004), 749–761 Zbl1049.94009MR2043749DOI10.1016/j.chaos.2003.12.022
  7. Grassi G., Mascolo S., 10.1002/(SICI)1097-007X(199911/12)27:6<543::AID-CTA81>3.0.CO;2-4, Internat. J. Circuit Theory Appl. 27 (1999), 543–553 (1999) DOI10.1002/(SICI)1097-007X(199911/12)27:6<543::AID-CTA81>3.0.CO;2-4
  8. Hunt B. R., Ott, E., York J. A., 10.1103/PhysRevE.55.4029, Phys. Rev. E 55 (1997), 4029–4034 (1997) MR1449377DOI10.1103/PhysRevE.55.4029
  9. Itoh M., Chua L. O., 10.1142/S0218127402005704, Internat. J. Bifurcation Chaos 12 (2002), 2069–2085 MR1941272DOI10.1142/S0218127402005704
  10. Jing J., Min L., Partial generalized synchronization theorem of discrete system with application in encryption scheme, In: Proc. Internat. Conference on Communications, Circuit and Systems, Kokura, Fukuoka 2007, Vol. I, pp. 51–55 
  11. Kocarev L., Parlitz U., 10.1103/PhysRevLett.76.1816, Phys. Rev. Lett. 76 (1996), 1816–1819 (1996) DOI10.1103/PhysRevLett.76.1816
  12. Lau F. C. M., Tse C. K., Chaos-Based Digital Communication Systems, Springer, Berlin 2003 Zbl1054.94504
  13. Liu J. M., Tang S., Chaotic optical communications using synchronized semiconductor lasers with optoelectronic feedback, Comptes Rendus Physique 5 (2004), 654–668 
  14. Min L., Chen, G., al. X. Zhang et, Approach to generalized synchronization with application to chaos-based secure communication, Commun. Theory Physics 41 (2004), 632–640 Zbl1167.37393MR2088885
  15. Murali K., Laskshmanan M., 10.1016/S0375-9601(98)00159-5, Phys. Lett. 241 (1998), 303–310 (1998) DOI10.1016/S0375-9601(98)00159-5
  16. Pecora L. M., Carroll T. L., 10.1103/PhysRevLett.64.821, Phys. Rev. Lett. 64 (1990), 821–824 (1990) Zbl0938.37019MR1038263DOI10.1103/PhysRevLett.64.821
  17. Pogromsky A., Santoboni, G., Nijmeijer H., 10.1016/S0167-2789(02)00654-1, Physica D 172 (2002), 65–87 MR1942999DOI10.1016/S0167-2789(02)00654-1
  18. Rucklidge A. M., 10.1017/S0022112092003392, J. Fluid Mechanics 237 (1992), 209–229 (1992) Zbl0747.76089MR1161996DOI10.1017/S0022112092003392
  19. Santoboni G., Pogromsky, A., Nijmeijer H., 10.1016/S0375-9601(01)00652-1, Phys. Lett. A 291 (2001), 265–273 Zbl0977.37047DOI10.1016/S0375-9601(01)00652-1
  20. Santoboni G., Pogromsky, A., Nijmeijer H., 10.1142/S0218127403006698, Internat. J. Bifurcation and Chaos 13 (2003), 453–458 MR1972160DOI10.1142/S0218127403006698
  21. Santoboni G., Pogromsky, A., Nijmeijer H., An observer for phase synchronization of chaos, Chaos 13 (2003), 356–363 Zbl0977.37047MR1964977
  22. Sprott J. C., 10.1016/S0375-9601(97)00088-1, Phys. Lett. A 228 (1997), 271–274 (1997) Zbl1043.37504MR1442639DOI10.1016/S0375-9601(97)00088-1
  23. Wu C. W., Chua L. O., Transmission of digital signals by chaotic synchronization, Internat. J. Bifurcation and Chaos 3 (1993), 1619–1627 (1993) 
  24. Yang T., Chua L. O., 10.1142/S0218127496001727, Internat. J. Bifurcation and Chaos 6 (1996), 2653–2660 (1996) DOI10.1142/S0218127496001727
  25. Yang T., Chua L. O., 10.1142/S0218127499000092, Internat. J. Bifurcation Chaos 9 (1999), 215–219 (1999) Zbl0937.37019MR1689607DOI10.1142/S0218127499000092
  26. Zhang X., Min L., A Generalized chaos synchronization based encryption algorithm for sound, Circuits Systems Signal Process. 24 (2005), 535–548 Zbl1103.94020MR2187037
  27. Zang H., Min, L., Zhao G., A generalized synchronization theorem for discrete-time chaos system with application in data encryption scheme, In: Proc. Internat. Conference on Communications, Circuit and Systems, Fukuoka 2007, Vol. II, pp. 1325–1329 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.