Typical continuous function without cycles is stable
Mathematica Slovaca (1985)
- Volume: 35, Issue: 2, page 123-126
 - ISSN: 0139-9918
 
Access Full Article
topHow to cite
topNeubrunnová, Katarína. "Typical continuous function without cycles is stable." Mathematica Slovaca 35.2 (1985): 123-126. <http://eudml.org/doc/34202>.
@article{Neubrunnová1985,
	author = {Neubrunnová, Katarína},
	journal = {Mathematica Slovaca},
	keywords = {unstable functions without cycles; stable functions; maps on the compact unit interval; Baire category},
	language = {eng},
	number = {2},
	pages = {123-126},
	publisher = {Mathematical Institute of the Slovak Academy of Sciences},
	title = {Typical continuous function without cycles is stable},
	url = {http://eudml.org/doc/34202},
	volume = {35},
	year = {1985},
}
TY  - JOUR
AU  - Neubrunnová, Katarína
TI  - Typical continuous function without cycles is stable
JO  - Mathematica Slovaca
PY  - 1985
PB  - Mathematical Institute of the Slovak Academy of Sciences
VL  - 35
IS  - 2
SP  - 123
EP  - 126
LA  - eng
KW  - unstable functions without cycles; stable functions; maps on the compact unit interval; Baire category
UR  - http://eudml.org/doc/34202
ER  - 
References
top- BLOCK L., Stability of periodic oгbits in the theorem of Šarkovskii, Pгoc. Ameг. Math. Soc. 81, 1981, 333-336. (1981) MR0593484
 - COVEN E. M., HEDLUND G. A., Continuous maps of the inteгval whose peгiodic points foгm a closed set, Pгoc. Amer. Math. Soc. 79, 1980, 127-133. (1980) MR0560598
 - KLOEDEN P., Chaotic difference equations are dense, Bull. Austr. Math. Soc. 15, 1976, 371-379. (1976) Zbl0335.39001MR0432829
 - LI T. Y., YORKE J. A., Period three implies chaos, Amer. Math. Monthly 82, 1 975, 985-992. Zbl0351.92021MR0385028
 - MAY R. M., Sirnple mathematical models with very complicated dynamics, Nature 261, 1976, 459-467. (1976)
 - SMÍTAL J., SMÍTALOVÁ K., Structural stability of typical nonchaotic difference equations, Journ. Math. Anal. and Appl. 90, 1982, 1-11. (1982) MR0680860
 - SMÍTAL J., NEUBRUNNOVÁ K., Stability of typical continuous functions with respect to some properties of their iterates, Proc. Amer. Math. Soc. to appear. Zbl0529.54038MR0727258
 - ШAPKOBCKИЙ A. H., Cocyщecтвoвaниe циклoв нeпpepывнoгo npeoбpaзoвaния npямoй в ceбя, Укpaин. Maт. Жypнaл 16, 1964, 61-71. (1964)
 - ШAPKOBCKИЙ A. H., O циклax и cтpyктype нeпpepывнoгo oтoбpaжeния, Укpaин. Maт. Жypнaл 17, 1965, 104-111. (1965) MR0186757
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.