Irreducible polynomials over finite fields with linearly independent roots

Štefan Schwarz

Mathematica Slovaca (1988)

  • Volume: 38, Issue: 2, page 147-158
  • ISSN: 0139-9918

How to cite

top

Schwarz, Štefan. "Irreducible polynomials over finite fields with linearly independent roots." Mathematica Slovaca 38.2 (1988): 147-158. <http://eudml.org/doc/34273>.

@article{Schwarz1988,
author = {Schwarz, Štefan},
journal = {Mathematica Slovaca},
keywords = {roots of a given irreducible polynomial over a finite field; normal basis},
language = {eng},
number = {2},
pages = {147-158},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Irreducible polynomials over finite fields with linearly independent roots},
url = {http://eudml.org/doc/34273},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Schwarz, Štefan
TI - Irreducible polynomials over finite fields with linearly independent roots
JO - Mathematica Slovaca
PY - 1988
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 38
IS - 2
SP - 147
EP - 158
LA - eng
KW - roots of a given irreducible polynomial over a finite field; normal basis
UR - http://eudml.org/doc/34273
ER -

References

top
  1. CONWAY J. H., A tabulation of some information concerning finite fields, Computers in Mathematical Research, North-Holland, Amsterdam, 1968, 37-50. (1968) Zbl0186.07602MR0237467
  2. LIDL R., NIEDERREITER H., Finite Fields, Addison-Wesley Publ. Comp., Reading, Mass., 1983. (1983) Zbl0554.12010MR0746963
  3. ORE O., Contributions to the theory of finite fields, Trans. Amer. Mat. Soc. 36, 1934, 243-274. (1934) Zbl0009.10003MR1501740
  4. PEI D. Y., WANG C. C., OMURA J. K., Normal basis offinite field GF(2m), IEEE Trans. on Inform. Theory, IT-32, 1986, 285-287. (1986) MR0838417
  5. PERLIS S., Normal bases of cyclic fields of prime-power degree, Duke Math. J. 9, 1942, 507-517. (1942) MR0007005
  6. PETERSON W. W., WELDON E. J., Error-Correcting Codes, M.I.T. Press, Cambridge, Mass., 1972. (1972) Zbl0251.94007MR0347444
  7. SCHWARZ Š., On the reducibility of binomial congruences and the bound of the least integer belonging to a given exponent (mod p), Časop. pěst. mat. fys. 74, 1949, 1-16. (1949) MR0032669
  8. SCHWARZ Š., On the reducibility of polynomials over a finite field, Quart. J. of Math. Oxford (2), 7, 1956, 110-124. (1956) Zbl0071.01703MR0096679
  9. SCHWARZ Š., Construction of normal bases in cyclic extensions of a field, (To appear in the Czech. Math. J.) Zbl0671.12006MR0946299

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.