Buck's measure density and sets of positive integers containing arithmetic progression
Mathematica Slovaca (1991)
- Volume: 41, Issue: 3, page 283-293
- ISSN: 0139-9918
Access Full Article
topHow to cite
topReferences
top- BUCK R. C., The measure theoretic approach to density, Amer. J. Math. LXVIII (1946), 560-580. (1946) Zbl0061.07503MR0018196
- DINCULEANU N., Vector Measures, VEB Deutscher Verlag der Wissen, Berlin, 1966 Zbl0647.60062MR0206189
- ERDÖS P., NATHANSON M. B., SÁRKÖZY A., Sumsets containing infinite arithmetic progressions, J. Number Theory 28 (1988), 159-166. (1988) Zbl0633.10047MR0927657
- HARDY G. H., WRIGHT E. M., An Introduction to the Theory of Numbers, 3rd ed., Oxford, 1954. (1954) Zbl0058.03301MR0067125
- MAHARAM D., Finitely additive measures on the integers, Sankhya: The Indian J, Stat. Ser. A 38 (1976), 44-59. (1976) Zbl0383.60008MR0473132
- PAŠTÉKA M., Some properties of Buck's measure density, (To appear.). Zbl0761.11003
- SIERPIŃSKI W., Elementary Theory of Numbers, PWN, Warszawa, 1964. (1964) Zbl0122.04402MR0175840
- SIKORSKI R., Funkcje rzeczywiste I, PWN, Warszawa, 1958. (1958) MR0105468
- SZEMEREDI E., On sets of integers containing no k elements in arithmetic progression, Acta Arithm. 27 (1975), 199-245. (1975) MR0369312