Antineighbourhood graphs

Jerzy Topp; Lutz Volkmann

Mathematica Slovaca (1992)

  • Volume: 42, Issue: 2, page 153-171
  • ISSN: 0232-0525

How to cite

top

Topp, Jerzy, and Volkmann, Lutz. "Antineighbourhood graphs." Mathematica Slovaca 42.2 (1992): 153-171. <http://eudml.org/doc/34331>.

@article{Topp1992,
author = {Topp, Jerzy, Volkmann, Lutz},
journal = {Mathematica Slovaca},
keywords = {antineighbourhood graph; neighbourhood graph; vertex-symmetric graph; cycle; wheel; block graphs; windmill graph},
language = {eng},
number = {2},
pages = {153-171},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Antineighbourhood graphs},
url = {http://eudml.org/doc/34331},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Topp, Jerzy
AU - Volkmann, Lutz
TI - Antineighbourhood graphs
JO - Mathematica Slovaca
PY - 1992
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 42
IS - 2
SP - 153
EP - 171
LA - eng
KW - antineighbourhood graph; neighbourhood graph; vertex-symmetric graph; cycle; wheel; block graphs; windmill graph
UR - http://eudml.org/doc/34331
ER -

References

top
  1. BEINEKE L. W., Characterizations of derived graphs, J. Combin. Theory 9 (1970), 129-135. (1970) Zbl0202.55702MR0262097
  2. BIELAK H., On j-neighbourhoods in simple graphs, In: Graphs and Other Combinatorial Topics, vol. 59, Teubneг-Texte zur Mathematik, 1983, pp. 7-11. (1983) Zbl0536.05058MR0737008
  3. BIELAK H., On graphs with non-isomorphic 2-neighbourhoods, Časopis Pěst. Mat. 108 (1983), 294-298. (1983) Zbl0526.05056MR0716415
  4. BLASS A., HARARY F., MILLER Z., Which trees are link graphs, J. Combin. Theory B 29 (1980), 277-292. (1980) Zbl0448.05028MR0602420
  5. BLOKHUIS A., BROUWER A. E., BUSET D., COHEN A. M., The locally icosahedral graphs, Lecture Notes in Pure and Appl. Math., vol. 103, 1985, pp. 19-22. (1985) Zbl0587.05059MR0826792
  6. BOESCH F., TINDELL R., Circulants and their connectivities, J. Graph Theory 8 (1984), 487-499. (1984) Zbl0549.05048MR0766498
  7. BROWN M., CONNELLY R., On graphs with a constant link. I, In: New Directions in the Theoгy of Gгaphs, Academic Press, 1973, pp. 19-51.. (1973) MR0347685
  8. BROWN M., CONNELLY R., On graphs with a constant link. II., Discrete Math. 11 (1975), 199-232. (1975) Zbl0304.05102MR0364016
  9. BULITKO V. K., On graphs with given vertex-neighbourhoods, Trudy Mat. Inst. Steklov. 133 (1973), 78-94. (1973) MR0434882
  10. BURNS D., KAPOOR S. F., OSTRAND P. A., On line-symmetric graphs, Fund. Math. 122 (1984), 1-21. (1984) Zbl0547.05053MR0753009
  11. BUSET D., Graphs which are locally a cube, Discrete Math. 46 (1983), 221-226. (1983) Zbl0532.05050MR0716442
  12. CHILTON B. L., GOULD R., POLIMENI A. D., A note on graphs whose neighborhoods are n-cycles, Geom. Dedicata 3 (1974), 289-294. (1974) Zbl0325.05116MR0357220
  13. CRUYCE, VANDENP., A fìnite graph which is locally a dodecahedron, Discrete Math. 54 (1985), 343-346. (1985) Zbl0571.05047MR0790596
  14. DOYEN J., HUBAUT X., REYNART M., Finite graphs with isomorphic neighbourhoods, In: Problèmes Combinaíoires et Théorie des Graphes (Colloq. Orsay 1976), CNRS, Paris, 1978, p. 111. (1976) 
  15. GODSIL C. D., Neighbourhoods of transitive graphs and GRR's, J. Combiп. Theory B 29 (1980), 116-140. (1980) Zbl0443.05047MR0584165
  16. GODSIL C. D., MCKAY B. D., Graphs with regular neighbourhoods, Lecture Notes in Math. 829, 1980, pp. 127-140.. (1980) Zbl0453.05052MR0611188
  17. HALL J. I., Locally Petersen graphs, J. Graph Theoгy 4 (1980), 173-187. (1980) Zbl0407.05041MR0570352
  18. HALL J. I., Graphs with constant link and small degree or order, J. Graph Theory 8 (1985), 419-444. (1985) Zbl0582.05049MR0812408
  19. HARARY F., Graph Theory., Addison-Wesley, Reading, Mass., 1969. (1969) Zbl0196.27202MR0256911
  20. HARARY F. PALMER E., A note on similar points and similar lines of a graph, Rev. Roumaine Math. Pures Appl. 10 (1965), 1489-1492. (1965) MR0197346
  21. HELL P., Graphs with given neighbourhoods I, In: Problèmes Combinatoires et Théorie des Graphes (Colloq. Orsay 1976), ONRS, Paris, 1978, pp. 219-223. (1976) MR0539979
  22. HELL P., LEVINSON H. WATKINS M., Some remarks on transitive realizations of graphs, In: Proc. 2nd Carrib. Conf. on Combinatorics and Computing, Barbados, 1977, pp. 1-8. (1977) 
  23. MOKAY B. D., Transitive graphs with fewer than twenty vertices, Math. Comp. 33 (1977), 1101-1121. (1977) MR0528064
  24. RYJÀČEK Z., On graphs with isomorphic, nonisomorphic and connected N2 -neighbourhoods, Časopis Pěst. Mat. 112 (1987), 66-79. (1987) MR0880933
  25. RYJÁČEK Z., Graphs with nonisomorphic vertex neighbourhoods of the first and second types, Časopis Pӗst. Mat. 112 (1987), 390-394. (1987) MR0921329
  26. SEDLÁČEK J., On local properties of finite graphs, Časopis Pěst. Mat. 106 (1981), 290-298. (1981) MR0629727
  27. SEDLÁČEK J., On local properties of finite graphs, Lecture Notes in Math. 1018, 1983, pp. 242-247. (1983) Zbl0531.05056MR0730654
  28. SEDLÁČEK J., Finite graphs with distinct neighbourhoods, Teubner-Texte Math. 73 (1985), 152-156. (1985) MR0869457
  29. TURNER J., Point-symmetric graphs with a prime number of points, J. Combin. Theory 3 (1967), 136-145. (1967) Zbl0161.20803MR0211908
  30. VOGLER W., Graphs with given group and given constant link, J. Graph Theoгy 8 (1984), 111-115. (1984) Zbl0534.05035MR0732024
  31. VOGLER W., Representing groups by graphs with constant link and hypergraphs, J. Graph Theory 10 (1986), 461-475. (1986) Zbl0632.05034MR0867211
  32. WINKLER P. M., Existence of graphs wiгth a given set of r-neighbourhoods, J. Combin. Theory Ser. B 34 (1983), 165-176. (1983) MR0703601
  33. YAP H. P., Some Topics in Graph Theory, London Mathematical Society, Lecture Note Series 108, Cambridge University Press, Cambridge, 1986. (1986) Zbl0588.05002MR0866145
  34. ZELINKA B., Graphs with prescribed neighbourhood graphs, Math. Slovaca 35 (1985), 195-197. (1985) Zbl0579.05045MR0795015
  35. ZELINKA B., Edge neighbourhood graphs, Czech. Math. J. 36 (111) (1986), 44-47. (1986) Zbl0599.05054MR0822865
  36. ZELINKA B., Disconnected neighbourhood graphs, Math. Slovaca 36 (1986), 109-110. (1986) Zbl0603.05039MR0849700
  37. ZYKOV A. A., Problem 30, In: Theory of Graphs and its Applications, Academia, Prague, 1964, pp. 164-165. (1964) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.