Continuous solutions of nonlinear boundary value problems for ODE's on unbounded intervals
Mathematica Slovaca (1992)
- Volume: 42, Issue: 3, page 279-297
- ISSN: 0232-0525
Access Full Article
topHow to cite
topKečkemétyová, Mária. "Continuous solutions of nonlinear boundary value problems for ODE's on unbounded intervals." Mathematica Slovaca 42.3 (1992): 279-297. <http://eudml.org/doc/34341>.
@article{Kečkemétyová1992,
author = {Kečkemétyová, Mária},
journal = {Mathematica Slovaca},
keywords = {nonlinear boundary value problems; fixed point; abstract coincidence equation; a priori bounds},
language = {eng},
number = {3},
pages = {279-297},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Continuous solutions of nonlinear boundary value problems for ODE's on unbounded intervals},
url = {http://eudml.org/doc/34341},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Kečkemétyová, Mária
TI - Continuous solutions of nonlinear boundary value problems for ODE's on unbounded intervals
JO - Mathematica Slovaca
PY - 1992
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 42
IS - 3
SP - 279
EP - 297
LA - eng
KW - nonlinear boundary value problems; fixed point; abstract coincidence equation; a priori bounds
UR - http://eudml.org/doc/34341
ER -
References
top- CECCHI M., MARINI M., ZEZZA P. L., Linear boundary value problems for systems of ordinary differential equations on non compact intervals, Ann. Mat. Pura Appl. (4) 123 (1980), 267-285. (1980) MR0581933
- COLLATZ L., Funktionalanalysis und Numerische Mathematik, Springer-Verlag, Berlin, 1964. (1964) Zbl0139.09802MR0165651
- DEMIDOVIČ B. P., Lectures of mathematical stability theory, (Russian), Izd. Nauka, Moscow, 1967, pp. 150. (1967) MR0226126
- DUNFORD N., SCHWARTZ J. T., Linear Operators, part I, Interscience Publishers, New York, 1957. (1957)
- GAJNES R. E., MAWHIN J., Coincidence Degree and Nonlinear Differential Equations, Lectures Notes in Math. 568, Springer, Berlin, 1977. (1977) MR0637067
- RUDIN W., Principles of Mathematical Analysis, McGraw-Hill Book Company, New York, 1964. (1964) Zbl0148.02903MR0166310
- ZEZZA P. L., An equivalence theorem for nonlinear operator equations and an extension of Leray-Schauder continuation theorem, Boll. Un. Mat. Ital. A (5) 15 (1978), 545-551. (1978) MR0521099
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.