Continuous solutions of nonlinear boundary value problems for ODE's on unbounded intervals

Mária Kečkemétyová

Mathematica Slovaca (1992)

  • Volume: 42, Issue: 3, page 279-297
  • ISSN: 0232-0525

How to cite

top

Kečkemétyová, Mária. "Continuous solutions of nonlinear boundary value problems for ODE's on unbounded intervals." Mathematica Slovaca 42.3 (1992): 279-297. <http://eudml.org/doc/34341>.

@article{Kečkemétyová1992,
author = {Kečkemétyová, Mária},
journal = {Mathematica Slovaca},
keywords = {nonlinear boundary value problems; fixed point; abstract coincidence equation; a priori bounds},
language = {eng},
number = {3},
pages = {279-297},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Continuous solutions of nonlinear boundary value problems for ODE's on unbounded intervals},
url = {http://eudml.org/doc/34341},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Kečkemétyová, Mária
TI - Continuous solutions of nonlinear boundary value problems for ODE's on unbounded intervals
JO - Mathematica Slovaca
PY - 1992
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 42
IS - 3
SP - 279
EP - 297
LA - eng
KW - nonlinear boundary value problems; fixed point; abstract coincidence equation; a priori bounds
UR - http://eudml.org/doc/34341
ER -

References

top
  1. CECCHI M., MARINI M., ZEZZA P. L., Linear boundary value problems for systems of ordinary differential equations on non compact intervals, Ann. Mat. Pura Appl. (4) 123 (1980), 267-285. (1980) MR0581933
  2. COLLATZ L., Funktionalanalysis und Numerische Mathematik, Springer-Verlag, Berlin, 1964. (1964) Zbl0139.09802MR0165651
  3. DEMIDOVIČ B. P., Lectures of mathematical stability theory, (Russian), Izd. Nauka, Moscow, 1967, pp. 150. (1967) MR0226126
  4. DUNFORD N., SCHWARTZ J. T., Linear Operators, part I, Interscience Publishers, New York, 1957. (1957) 
  5. GAJNES R. E., MAWHIN J., Coincidence Degree and Nonlinear Differential Equations, Lectures Notes in Math. 568, Springer, Berlin, 1977. (1977) MR0637067
  6. RUDIN W., Principles of Mathematical Analysis, McGraw-Hill Book Company, New York, 1964. (1964) Zbl0148.02903MR0166310
  7. ZEZZA P. L., An equivalence theorem for nonlinear operator equations and an extension of Leray-Schauder continuation theorem, Boll. Un. Mat. Ital. A (5) 15 (1978), 545-551. (1978) MR0521099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.