Witt equivalence of cyclotomic fields

Radan Kučera; Kazimierz Szymiczek

Mathematica Slovaca (1992)

  • Volume: 42, Issue: 5, page 663-676
  • ISSN: 0139-9918

How to cite

top

Kučera, Radan, and Szymiczek, Kazimierz. "Witt equivalence of cyclotomic fields." Mathematica Slovaca 42.5 (1992): 663-676. <http://eudml.org/doc/34351>.

@article{Kučera1992,
author = {Kučera, Radan, Szymiczek, Kazimierz},
journal = {Mathematica Slovaca},
keywords = {tables; Witt rings; Witt equivalence; degree; level; number of dyadic primes; cyclotomic fields},
language = {eng},
number = {5},
pages = {663-676},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Witt equivalence of cyclotomic fields},
url = {http://eudml.org/doc/34351},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Kučera, Radan
AU - Szymiczek, Kazimierz
TI - Witt equivalence of cyclotomic fields
JO - Mathematica Slovaca
PY - 1992
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 42
IS - 5
SP - 663
EP - 676
LA - eng
KW - tables; Witt rings; Witt equivalence; degree; level; number of dyadic primes; cyclotomic fields
UR - http://eudml.org/doc/34351
ER -

References

top
  1. BATEMAN P. T., The distribution of values of the Euler function, Acta Arith. 21 (1972), 329-345. (1972) Zbl0217.31901MR0302586
  2. Algebraic Number Theory, (J. W. S. Cassels and A. Frohlich, eds.), Academic Press, 1967. (1967) Zbl0153.07403MR0215665
  3. CZOGALA A., On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1991), 27-46. (1991) Zbl0733.11012MR1111088
  4. JAKUBEC S., MARKO F., Witt equivalence classes of quartic number fields, Math. Comp. 58 (1992), 355-368. (1992) Zbl0742.11022MR1094952
  5. LAM T. Y., The Algebraic Theory of Quadratic Forms, Benjamin/Cummings, Reading-Mass, 1980. (1980) Zbl0437.10006MR0634798
  6. MAIER H., POMERANCE C., On the number of distinct values of Euler's Φ-function, Acta Arith. 49 (1988), 263-275. (1988) MR0932525
  7. PERLIS R., SZYMICZEK K., CONNER P. E., LITHERLAND R., Matching Witts with global fields, Preprint (1989). (1989) 
  8. SCHINZEL A., Sur l'équation Φ(x) = m, Elem. Math. 11 (1956), 75-78. (1956) MR0080114
  9. SIERPIŃSKI W., Elementary Theory of Numbers, (A. Schinzel, ed.), PWN and North-Holland, Warszawa - Amsterdam - Oxford - New York, 1987. (1987) MR0930670
  10. SZYMICZEK K., Problem No. 12, In: Conf. Report 9-th Czechoslovak Colloq. Number Theory, Račkova Dolina 1989, Masarykova univerzita, Brno, 1989. (1989) 
  11. SZYMICZEK K., Matching Witts locally and globally, Math. Slovaca 41 (1991), 315-330. (1991) Zbl0766.11023MR1126669
  12. SZYMICZEK K., Witt equivalence of global fields, Comm. Algebra 19 (1991), 1125-1149. (1991) Zbl0724.11020MR1102331
  13. WEISS E., Algebraic Number Theory, Chelsea Publishing Co., New York, 1976. (1976) Zbl0348.12101MR0417112

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.