Weak solutions of a boundary value problem for nonlinear ordinary differential equation of second order in Banach spaces

Danuta Ozdarska; Stanisław Szufla

Mathematica Slovaca (1993)

  • Volume: 43, Issue: 3, page 301-307
  • ISSN: 0232-0525

How to cite

top

Ozdarska, Danuta, and Szufla, Stanisław. "Weak solutions of a boundary value problem for nonlinear ordinary differential equation of second order in Banach spaces." Mathematica Slovaca 43.3 (1993): 301-307. <http://eudml.org/doc/34360>.

@article{Ozdarska1993,
author = {Ozdarska, Danuta, Szufla, Stanisław},
journal = {Mathematica Slovaca},
keywords = {measure of weak noncompactness; existence of a weak solution; boundary value problem; Banach space},
language = {eng},
number = {3},
pages = {301-307},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Weak solutions of a boundary value problem for nonlinear ordinary differential equation of second order in Banach spaces},
url = {http://eudml.org/doc/34360},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Ozdarska, Danuta
AU - Szufla, Stanisław
TI - Weak solutions of a boundary value problem for nonlinear ordinary differential equation of second order in Banach spaces
JO - Mathematica Slovaca
PY - 1993
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 43
IS - 3
SP - 301
EP - 307
LA - eng
KW - measure of weak noncompactness; existence of a weak solution; boundary value problem; Banach space
UR - http://eudml.org/doc/34360
ER -

References

top
  1. AMBROSETTI A., Un teorema di esistenza per le equozioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. (1967) MR0222426
  2. CHANDRA J., LAKSHMIKANTHAM V., MITCHELL A. R., Existence of solutions of boundary value problems for nonlinear second order systems in Banach space, Nonlinear Anal. 2 (1978), 157-168. (1978) MR0512279
  3. CRAMER E., LAKSHMIKANTHAM V., MITCHELL A. R., On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Anal. 2 (1978), 169-177. (1978) Zbl0379.34041MR0512280
  4. DE BLASI F. S., On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R. S. Roumanie 21 (1977), 259-262. (1977) Zbl0365.46015MR0482402
  5. DIESTEL J., Sequences and Series in Banach Spaces, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1983. (1983) MR0737004
  6. HARTMANN P., Ordinary Differential Equations, J. Wiley, New York-London, 1964. (1964) MR0171038
  7. KELLY J. L., General Topology, Van Nostrand, Toronto-New York-London, 1957. (1957) 
  8. MÖNCH H., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985-999. (1980) Zbl0462.34041MR0586861
  9. SCORZA-DRAGONI G., Sul problema dei valori a limiti per i systemi di equazioni differenziali del secondo ordine, Boll. Un. Mat. Ital. 14 (1935), 225-230. (1935) 
  10. SZEP A., Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6 (1971), 197-203. (1971) MR0330688
  11. SZUFLA S., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 8 (1984), 1481-1487. (1984) Zbl0561.34048MR0769409
  12. SZUFLA S., Sets of fixed points of nonlinear mappings in function spaces, Funkcial. Ekvac. 22 (1979), 121-126. (1979) Zbl0419.47025MR0551256

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.