Ergodic theorems for linear operators on C ( X ) with strict topology

Jaroslav Mohapl

Mathematica Slovaca (1993)

  • Volume: 43, Issue: 5, page 579-592
  • ISSN: 0139-9918

How to cite

top

Mohapl, Jaroslav. "Ergodic theorems for linear operators on $C(X)$ with strict topology." Mathematica Slovaca 43.5 (1993): 579-592. <http://eudml.org/doc/34368>.

@article{Mohapl1993,
author = {Mohapl, Jaroslav},
journal = {Mathematica Slovaca},
keywords = {space of continuous functions; integral operator; kernel; ergodic theorem; locally convex topology; evolution equations},
language = {eng},
number = {5},
pages = {579-592},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Ergodic theorems for linear operators on $C(X)$ with strict topology},
url = {http://eudml.org/doc/34368},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Mohapl, Jaroslav
TI - Ergodic theorems for linear operators on $C(X)$ with strict topology
JO - Mathematica Slovaca
PY - 1993
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 43
IS - 5
SP - 579
EP - 592
LA - eng
KW - space of continuous functions; integral operator; kernel; ergodic theorem; locally convex topology; evolution equations
UR - http://eudml.org/doc/34368
ER -

References

top
  1. CONWAY J. B., The strict topology and compactness in the space of measures, Bull. Amer. Math. Soc. 72 (1966), 75-78. (1966) Zbl0137.31503MR0187054
  2. CONWAY J. B., The strict topology and compactness in the space of measures II, Trans. Amer. Math. Soc. 129 (1969), 474-486. (1969) MR0206685
  3. FREMLIN D. H., GARLING D. J. H., HAYDON R. G., Bounded measures on topological spaces, Proc. London Math. Soc. (3) 25 (1972), 115-136. (1972) Zbl0236.46025MR0344405
  4. GIRSANOV I. V., Strongly Feller processes, (Russian), Teor. Veroyatnost. i Primenen. 5 (1960), 7-28. (1960) MR0137151
  5. HAS'MINSKI R. Z., Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations, (Russian), Teor. Veroyatnost. i Primenen. 5 (1960), 196-214. (1960) MR0133871
  6. KELLY J. L., NAMIOKA I., al., Linear Topological Spaces, Van Nostrand, Toronto, 1963. (1963) MR0166578
  7. LIGGET T. M., Interacting Particle Systems, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1985. (1985) MR0776231
  8. LOTZ H. P., Positive Linear Operators on Lp and the Doeblin Condition. Aspects of Positivity in Functional Analysis, Elsevier Science Publishers B.V., North-Holland, New York-Amsterdam, 1986. (1986) MR0859722
  9. MEYN S. P., Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov function, SIAM J. Control Optim. 27 (1989), 1409-1439. (1989) Zbl0681.60067MR1022436
  10. NUMMELIN E., General Irreducible Markov Chains and Non-Negative Operators, Cambridge University Press, Cambridge, 1984. (1984) Zbl0551.60066MR0776608
  11. YOSIDA K., Functional Analysis, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. (1965) Zbl0126.11504MR0350358
  12. VARADARJAN V. S., Measures on topological spaces, Mat. Sb. 55 (1961), 35-100. (1961) 
  13. WHEELER R. F., The strict topology, separable measures, and paracompactness, Pacific J. Math. 47 (1973), 287-302. (1973) Zbl0244.46028MR0341047
  14. WHEELER R. F., Weak and pointwise compactness in the space of bounded continuous functions, Trans. Amer. Math. Soc. 266 (1981), 515-530. (1981) Zbl0477.46016MR0617548

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.