Note on the number of solutions of the congruence
Mathematica Slovaca (1994)
- Volume: 44, Issue: 2, page 163-169
- ISSN: 0232-0525
Access Full Article
topHow to cite
topJakubec, Stanislav. "Note on the number of solutions of the congruence $f(x_1,x_2,\dots , x_n)\equiv 0\hspace{4.44443pt}(\@mod \; p)$." Mathematica Slovaca 44.2 (1994): 163-169. <http://eudml.org/doc/34380>.
@article{Jakubec1994,
author = {Jakubec, Stanislav},
journal = {Mathematica Slovaca},
keywords = {polynomial congruences; number of solutions},
language = {eng},
number = {2},
pages = {163-169},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Note on the number of solutions of the congruence $f(x_1,x_2,\dots , x_n)\equiv 0\hspace\{4.44443pt\}(\@mod \; p)$},
url = {http://eudml.org/doc/34380},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Jakubec, Stanislav
TI - Note on the number of solutions of the congruence $f(x_1,x_2,\dots , x_n)\equiv 0\hspace{4.44443pt}(\@mod \; p)$
JO - Mathematica Slovaca
PY - 1994
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 44
IS - 2
SP - 163
EP - 169
LA - eng
KW - polynomial congruences; number of solutions
UR - http://eudml.org/doc/34380
ER -
References
top- JAKUBEC J., The congruence for Gauss's period, J. Number Theory (To appear).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.