Linear finitely separated objects of subcategories of domains

Jan Paseka

Mathematica Slovaca (1996)

  • Volume: 46, Issue: 5, page 457-490
  • ISSN: 0232-0525

How to cite

top

Paseka, Jan. "Linear finitely separated objects of subcategories of domains." Mathematica Slovaca 46.5 (1996): 457-490. <http://eudml.org/doc/34444>.

@article{Paseka1996,
author = {Paseka, Jan},
journal = {Mathematica Slovaca},
keywords = {LFS-domain; LFS-frame; LFS-preframe; abstract base; stable prelocale; supercontinuous frame; superalgebraic frame; category of frames; approximation; Stone duality},
language = {eng},
number = {5},
pages = {457-490},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Linear finitely separated objects of subcategories of domains},
url = {http://eudml.org/doc/34444},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Paseka, Jan
TI - Linear finitely separated objects of subcategories of domains
JO - Mathematica Slovaca
PY - 1996
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 46
IS - 5
SP - 457
EP - 490
LA - eng
KW - LFS-domain; LFS-frame; LFS-preframe; abstract base; stable prelocale; supercontinuous frame; superalgebraic frame; category of frames; approximation; Stone duality
UR - http://eudml.org/doc/34444
ER -

References

top
  1. ABRAMSKY S., Domain theory in logical form, Ann. Pure Appl. Logic 51 (1991), 1-77. (1991) Zbl0737.03006MR1100496
  2. ABRAMSKY S.-JUNG A., Domain theory, In: Handbook of Logic in Computer Science. Vol. 3 (S. Abramskу, D. M. Gabbaу, and T. S. E. Maibaum, eds.), Clarendon Press, Oxford, 1995. (1995) MR1365749
  3. BANASCHEWSKI B., Another look at the localic Tychonoff theorem, Comment. Math. Univ. Carolin. 29 (1988), 647-656. (1988) Zbl0667.54009MR0982782
  4. BANASCHEWSKI B.-NIEFIELD S. B., Projective and supercoherent frames, J. Pure Appl. Algebra 70 (1991), 45-51. (1991) Zbl0744.06006MR1100504
  5. ERNE M., The ABC of Order and Topology, Category Theory at Work, Heldеrmann Vеrlag, Bеrlin, 1991. (1991) Zbl0735.18005MR1147919
  6. GIERZ G.-HOFMANN K. H.-KEIMEL K.-LAWSON J. D.-MISLOVE M., SCOТТ D. S., A Compendium of Continuous Lattices, Springеr Vеrlag, Nеw York, 1980. (1980) MR0614752
  7. GIERZ G.-KEIMEL K., Continuous ideal completions and compactifications, In: Continuous latticеs and thеir applications. Lеcturе Notеs in Purе and Appl. Math. 101, M. Dеkkеr Inc, Nеw York-Basеl, 1985, pp. 97-124. (1985) 
  8. HUТH. M.-JUNG A.-KEIMEL K., Linear types, approximation and topology, In: Procееdings, Ninth Annual IEEE Sуmposium on Logic in Computеr Sciеncе, IEEE Computеr Sociеtу Prеss, 1994, pp. 110-114. (1994) 
  9. HUTH M.-MISLOVE M., A Characterization of linear FS-lattices, Technical Report 1679, Technische Hochschule, Darmstadt. 
  10. HUTH M., Linear domains and linear maps, In: Mathematical Foundation of Programming Semantics. Lecture Notes in Comput. Sci. 802 (S. Brookes, M. Main, A. Melton and D. Schmidt, eds.), Springer Verlag, New York, 1994, pp. 438-453. (1994) MR1314645
  11. JOHNSTONE P. T.-VICKERS S., Preframe presentations present, In: Category Theory Proceedings of the International Conference, Como 1990. Lecture Notes in Math. 1488. Springer Verlag, New York, 1991, pp. 193-212. (1990) MR1173013
  12. JOHNSTONE P. T., Stone Spaces, Cambridge Stud. Adv. Math. 3, Cambridge University Press, Cambridge, 1982. (1982) Zbl0499.54001MR0698074
  13. JUNG A., Cartesian Closed Categories of Domains, CWI Tract 66, Centrum Wisk. Inform., Amsterdam, 1989. (1989) Zbl0719.06004MR1006873
  14. JUNG A.-SUNDERHAUF P., On the duality of compact vs. open, In: Papers on General Topology and Applications: Eleventh Summer Conference at University of Southern Maine. Ann. New York Acad. Sci. (S. Andima, R. C. Flagg, G. Itzkowitz, P. Misra, Y. Kong and R. D. Kopperman, eds.), New York Academy of Sciences, New York, 1996 (To appear). (1996) Zbl0885.54001MR1429656
  15. LAWSON J. D., The versatile continuous order, In: Mathematical Foundations of Programming Language Semantics. Lecture Notes in Comput. Sci. 98 (M. Main. A. Melton, M. Mislove and D. Schmidt, eds.), Springer Verlag, New York, 1988, pp. 134-160. (1988) Zbl0662.06002MR0948487
  16. LAWSON J. D., Order and strongly sober compactification, In: Topology and Category Theory in Computer Science (G. M. Reed, A. W. Roscoe and R. F. Wrachter, eds.). Clarendon Press, Oxford, 1991, pp. 179 205. (1991) MR1145775
  17. SMYTH M. B., Stable local compactification L., J. London Math. Soc. (2) 45 (1992), 321-340. (1992) MR1171559
  18. VICKERS S. J., Information systems for continuous posets, Theoret. Comput. Sci. 114 (1993), 114-229. (1993) Zbl0779.06006MR1228858

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.