Geometric proof of the easy part of the Hopf invariant one theorem
Mathematica Slovaca (1999)
- Volume: 49, Issue: 1, page 71-74
- ISSN: 0232-0525
Access Full Article
topHow to cite
topAkhmet'ev, Pjotr, and Szücs, András. "Geometric proof of the easy part of the Hopf invariant one theorem." Mathematica Slovaca 49.1 (1999): 71-74. <http://eudml.org/doc/34487>.
@article{Akhmetev1999,
author = {Akhmet'ev, Pjotr, Szücs, András},
journal = {Mathematica Slovaca},
keywords = {framed manifold; immersion; double point},
language = {eng},
number = {1},
pages = {71-74},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Geometric proof of the easy part of the Hopf invariant one theorem},
url = {http://eudml.org/doc/34487},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Akhmet'ev, Pjotr
AU - Szücs, András
TI - Geometric proof of the easy part of the Hopf invariant one theorem
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 1
SP - 71
EP - 74
LA - eng
KW - framed manifold; immersion; double point
UR - http://eudml.org/doc/34487
ER -
References
top- ADAMS J. F., On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. (1960) Zbl0096.17404MR0141119
- ADEM J., The iteration of Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 720-726. (1952) MR0050278
- HIRSCH M., Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. (1959) Zbl0113.17202MR0119214
- MILLER J. G., Self-intersections of some immersed manifolds, Trans. Amer. Math. Soc. 136 (1969), 329-338. (1969) Zbl0186.57401MR0234480
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.