Control and separating points of modular functions

Anna Avallone; Giuseppina Barbieri; Raffaella Cilia

Mathematica Slovaca (1999)

  • Volume: 49, Issue: 2, page 155-182
  • ISSN: 0232-0525

How to cite

top

Avallone, Anna, Barbieri, Giuseppina, and Cilia, Raffaella. "Control and separating points of modular functions." Mathematica Slovaca 49.2 (1999): 155-182. <http://eudml.org/doc/34492>.

@article{Avallone1999,
author = {Avallone, Anna, Barbieri, Giuseppina, Cilia, Raffaella},
journal = {Mathematica Slovaca},
keywords = {modular functions; complemented lattices; controls; separating points},
language = {eng},
number = {2},
pages = {155-182},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Control and separating points of modular functions},
url = {http://eudml.org/doc/34492},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Avallone, Anna
AU - Barbieri, Giuseppina
AU - Cilia, Raffaella
TI - Control and separating points of modular functions
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 2
SP - 155
EP - 182
LA - eng
KW - modular functions; complemented lattices; controls; separating points
UR - http://eudml.org/doc/34492
ER -

References

top
  1. AAVALLONE A., Liapunov theorem for modular functions, Internat. J. Theoret. Phys. 34 (1995), 1197-1204. (1995) MR1353662
  2. AVALLONE A., Nonatomic vector-valued modular functions, Preprint (1995). (1995) MR1739014
  3. AVALLONE A., LEPELLERE M. A., Modular functions: Uniform boundedness and compactness, Rend. Circ. Mat. Palermo (2) XLVII (1998), 221-264. (1998) Zbl0931.28009MR1633479
  4. AVALLONE A.-WEBER H., Lattice uniformities generated by filters, J. Math. Anal. Appl. 209 (1997), 507-528. (1997) Zbl0907.06015MR1474622
  5. BARBIERI G.-WEBER H., A topological approach to the study of fuzzy measures, In: Functional Analysis and Economic Theory (Y. Abramovich et al., eds.), Springer, Berlin, 1998, pp. 17-46. (1998) Zbl0916.28015MR1730117
  6. BASILE A.-WEBER H., Topological Boolean rings of first and second category, Separating points for a countable family of measures, Radovi Mat. 2 (1986), 113-125. (1986) Zbl0596.28015MR0852966
  7. BASILE A., Controls of families of finitely additive functions, Ricerche Mat. XXXV (1986), 291-302. (1986) Zbl0648.28007MR0932439
  8. BIRKHOFF G., Lattice Theory, (3rd ed.), Amer. Math. Soc, Providence, R.L, 1967. (1967) Zbl0153.02501MR0227053
  9. COSTANTINESCU C., Some properties of speces of measures, Atti Sem. Mat. Fis. Univ. Modena 35, Supplemento (1987). (1987) 
  10. DREWNOWSKI L., Topological rings of sets, continuous set functions, integration. III, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 20 (1972), 439-445. (1972) Zbl0249.28006MR0316653
  11. DREWNOWSKI L., On control submeasures and measures, Studia Math. L (1974), 203-224. (1974) Zbl0285.28015MR0352394
  12. FLEISCHER I.-TRAYNOR T., Equivalence of group-valued measure on an abstract lattice, Bull. Acad. Polon. Sci. Ser. Sci. Math. 28 (1980), 549-556. (1980) MR0628641
  13. FLEISCHER I.-TRAYNOR T., Group-valued modular functions, Algebra Universalis 14 (1982), 287-291. (1982) Zbl0458.06004MR0654397
  14. GOULD G. G., Extensions of vector-valued measures, Proc. London. Math. Soc. 16 (1966), 685-704. (1966) Zbl0148.38102MR0196035
  15. G., General Lattice Theory, Pure Appl. Math., Academic Press, Boston, MA, 1978. (1978) Zbl0436.06001MR0509213
  16. KINDLER J., A Mazur-Orlicz type theorem for submodular set functions, J. Math. Anal. Appl. 120 (1986), 533-546. (1986) Zbl0605.28004MR0864770
  17. KRANZ P., Mutual equivalence of vector and scalar measures on lattices, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 25 (1977), 243-250. (1977) Zbl0361.46041MR0444892
  18. KLEMENT E. P.-WEBER S., Generalized measure, Fuzzy Sets and Systems 40 (1991), 375-394. (1991) MR1103665
  19. LIPECKI Z., A characterization of group-valued measures satisfying the countable chain condition, Colloq. Math. 11 (1974), 231-234. (1974) Zbl0271.28009MR0364595
  20. OHBA S., Some remarks on vector measures, Bull. Math. Soc. Sci. Math. 16 (1972), 217-223. (1972) Zbl0275.28015MR0335746
  21. PAP E., Hewitt-Yosida decomposition for □-decomposable measures, Tatra Mt. Math. Publ. 3 (1993), 147-154. (1993) MR1278528
  22. PAP E., Decompositions of supermodular functions and □-decomposable measures, Fuzzy Sets and Systems 65 (1994), 71-83. (1994) MR1294041
  23. SCHMIDT K., Jordan Decompositions of Generalized Vector Measures, Pitman Res. Notes Math. Ser. 214., Longman Sci. Tech., Harlow, 1989. (1989) Zbl0692.28004MR1028550
  24. TRAYNOR T., Modular functions and their Frechet-Nikodym topologies, In: Lecture Notes in Math. 1089, Springer, New Yourk, 1984, pp. 171-180. (1984) Zbl0576.28014MR0786696
  25. WEBER H., Uniform lattices I: A generalization of topological Riesz space and topological Boolean rings; Uniform lattices II, Ann. Mat. Pura Appl. 160; 165 (1991; 1993), 347-370; 133-158. (1991) MR1163215
  26. WEBER H., Valuations on complemented lattices, Internat. J. Theoret. Phys. 34 (1995), 1799-1806. (1995) Zbl0843.06005MR1353726
  27. WEBER H., Lattice uniformities and modular functions on orthomodular lattices, Order 12 (1995), 295-305. (1995) Zbl0834.06013MR1361614
  28. WEBER H., On modular functions, Funct. Approx. Comment. Math. 24 (1996), 35-52. (1996) Zbl0887.06011MR1453447
  29. WEBER H., Uniform lattices and modular functions, Atti Sem. Mat. Fis. Univ. Modena XLVII (1999), 159-182. (1999) Zbl0989.28007MR1694416
  30. WEBER H., [unknown], Manuscript. Zbl1239.00005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.