The Brooks-Jewett theorem for k -triangular functions

Simonetta Salvati

Mathematica Slovaca (2000)

  • Volume: 50, Issue: 3, page 247-257
  • ISSN: 0139-9918

How to cite

top

Salvati, Simonetta. "The Brooks-Jewett theorem for $k$-triangular functions." Mathematica Slovaca 50.3 (2000): 247-257. <http://eudml.org/doc/34514>.

@article{Salvati2000,
author = {Salvati, Simonetta},
journal = {Mathematica Slovaca},
keywords = {orthomodular poset; -triangular function; exhaustive function; subsequential completeness property; Brooks-Jewett theorem},
language = {eng},
number = {3},
pages = {247-257},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The Brooks-Jewett theorem for $k$-triangular functions},
url = {http://eudml.org/doc/34514},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Salvati, Simonetta
TI - The Brooks-Jewett theorem for $k$-triangular functions
JO - Mathematica Slovaca
PY - 2000
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 50
IS - 3
SP - 247
EP - 257
LA - eng
KW - orthomodular poset; -triangular function; exhaustive function; subsequential completeness property; Brooks-Jewett theorem
UR - http://eudml.org/doc/34514
ER -

References

top
  1. AGAFONOVA L. V.- KLIMKIN V. M., A Nikodym theorem for triangular set functions, Siberian Math. J. 15 (1974), 669-674. (1974) MR0348073
  2. ANTOSIK P.- PAP E., A Simplification of the proof of Rosenthaľs lemma for measures on fields, In: Convergence methods in analуsis, Proc. 2nd Conf., Szczуrk/Pol., 1981, pp. 26-31. (1981) 
  3. ANTOSIK P.-SAEKI S., A lemma on set functions and its applications, Dissertationes Math. (Rozprawу Mat.) 340 (1995), 13-21. (1995) Zbl0837.28011MR1342564
  4. ANTOSIK P.-SWARTZ C., Matrix Methods in Analysis, Lecture Notes in Math. 1113, Springer Verlag, New York, 1985. (1985) Zbl0564.46001MR0781343
  5. ANTOSIK P.-SWARTZ, C, A theorem on matrices and its applications in functional analysis, Studia Math. 77 (1984), 197-205. (1984) Zbl0538.46031MR0745276
  6. AVALLONE A.-LEPELLERE M. A., Modular functions: uniform boundedness and compactness, Rend. Circ. Mat. Palermo (2) (To appear). Zbl0931.28009MR1633479
  7. BERAN L., Orthomodular Lattices, Algebraic Approach, Academia Prague, Reidel, Dordrecht, 1984. (1984) MR0785005
  8. BIRKHOFF G.-VON NEUMANN J., The logic of quantum mechanics, Ann. of Math. (2) 37 (1936), 823-843. (1936) MR1503312
  9. CONSTANTINESCU C., Some properties of spaces of measures, Atti Sem. Mat. Fis. Univ. Modena Suppl. 35 (1989). (1989) Zbl0696.46027MR0994282
  10. D'ANDREA A. B.-DE LUCIA P., The Brooks-Jewett theorem on an orthomodular lattice, J. Math. Anal. Appl. 154 (1991), 507-522. (1991) MR1088647
  11. DE LUCIA P.-PAP E., Nikodym convergence theorem for uniform space valued functions defined on D-posets, Math. Slovaca 45 (1995), 367-376. (1995) Zbl0856.28008MR1387053
  12. DE LUCIA P.-SALVATI S., A Caficro characterization of uniform s-boundedn ss, Rend. Circ. Mat. Palermo 40 (199 4), 121-128. MR1407085
  13. DE LUCIA P.-TRAYNOR T., Non-commutative group valued measures on an orthomodular poset, Math. Japonica 40 (1994), 309-315. (1994) Zbl0812.28008MR1297247
  14. DIESTEL J.-UHL J. J., Vector Measures, Math. Surveys Monographs 15, Amer. Math. Soc, Providence, RI, 1977. (1977) Zbl0369.46039MR0453964
  15. DOBRAKOV I., On submeasures I, Dissertationes Math. (Rozprawy Mat.) 112 (1974), 1-35. (1974) Zbl0292.28001MR0367140
  16. DREWNOWSKI L., On the continuity of certain non-additive set functions, Colloq. Math. 38 (1978), 243-253. (1978) Zbl0398.28003MR0492153
  17. GUARIGLIA E., K-triangular functions on an ortho-modular lattice and the Brooks-Jewett theorem, Rad. Mat. 6 (1990), 241-251. (1990) MR1146880
  18. GUARIGLIA E., Uniform boundedness theorems for k-triangular set functions, Acta Sci. Math. (Szeged) 54 (1990), 391-407. (1990) Zbl0726.28008MR1096818
  19. GUSEL'NIKOV N. S., Triangular set functions and Nikodym's theorem on the uniform boundedness of a family of measures, Mat. Sb. 35 (1979), 19-33. (1979) Zbl0418.28003
  20. GUSEL'NIKOV N. S., Extension of quasi-Lipschitz set functions, Math. Notes 17 (1975), 14-19. (1975) Zbl0355.28001MR0374376
  21. HABIL E. D., The Brooks-Jewett theorem for k-triangular functions on difference posets and orthoalgebras, Math. Slovaca 47 (1997), 417-428. (1997) Zbl0961.28003MR1796954
  22. KALMBACH G., Orthomodular Lattices, Academic Press, London-New York, 1983. (1983) Zbl0528.06012MR0716496
  23. KUPKA J., A short proof and generalization of a measure theoretic disjointization lemma, Proc. Amer. Math. Soc. 45 (1974), 70-72. (1974) Zbl0291.28004MR0342666
  24. PAP E., The Vitali-Hahn-Saks theorems for k-triangular set functions, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 21-32. (1987) Zbl0626.28001MR0922985
  25. PAP E., A generalization of a theorem of Dieudonne for k-triangular set functions, Acta Sci. Math. (Szeged) 50 (1986), 159-167. (1986) Zbl0609.28002MR0862190
  26. PAP E., Null-Additive Set Functions, Math. Appl. 337, Kluwer Acad. Publ., Dordrecht, 1995. (1995) Zbl0968.28010MR1368630
  27. PAP E., Funkcionalna analiza, Institut za matematiku, Novi Sad, 1982. (1982) Zbl0496.46001MR0683763
  28. PTAK P.-PULMANNOVA S., Orthomodular Structures as Quantum Logics, Kluwer Acad. Publ., Dordrecht, 1991. (1991) Zbl0743.03039MR1176314
  29. SALVATI S., Teoremi di convergenza in teoria della misura non commutativa, PhD Thesis, 1997. (1997) 
  30. SWARTZ C., An Introduction to Functional Analysis, Dekker, New York, 1992. (1992) Zbl0751.46002MR1156078
  31. VON NEUMANN J., Matematische Grendlagen der Quantunmechanik, Springer Verlag, Berlin, 1932 [English translation: Princeton University Press 1955]. (1932) 
  32. WEBER H., A diagonal theorem. Answer to a question of Antosik, Bull. Polish Acad. Sci. Math. 41 (1993), 95-102. (1993) Zbl0799.40005MR1414755
  33. WEBER H., Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and Nikodym's boundedness theorem, Rocky Mountain J. Math. 16 (1986), 253-275. (1986) Zbl0604.28006MR0843053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.