Face size and the maximum genus of a graph. II: Nonsimple graphs

Yuanqiu Huang; Yan Pei Liu

Mathematica Slovaca (2001)

  • Volume: 51, Issue: 2, page 129-140
  • ISSN: 0139-9918

How to cite

top

Huang, Yuanqiu, and Liu, Yan Pei. "Face size and the maximum genus of a graph. II: Nonsimple graphs." Mathematica Slovaca 51.2 (2001): 129-140. <http://eudml.org/doc/34531>.

@article{Huang2001,
author = {Huang, Yuanqiu, Liu, Yan Pei},
journal = {Mathematica Slovaca},
keywords = {graph face; maximum genus; upper embeddable},
language = {eng},
number = {2},
pages = {129-140},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Face size and the maximum genus of a graph. II: Nonsimple graphs},
url = {http://eudml.org/doc/34531},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Huang, Yuanqiu
AU - Liu, Yan Pei
TI - Face size and the maximum genus of a graph. II: Nonsimple graphs
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 2
SP - 129
EP - 140
LA - eng
KW - graph face; maximum genus; upper embeddable
UR - http://eudml.org/doc/34531
ER -

References

top
  1. FU H.-TSAI M., The maximum genus of diameter three graphs, Australas. J. Combin. 14 (1996), 1187-1197. (1996) Zbl0862.05027MR1424333
  2. GROSS J.-TUCKER T., Topological Graph Theory, John Wiley, New York, 1987. (1987) Zbl0621.05013MR0898434
  3. HUANG Y.-LIU Y., Face size and the maximum genus of a graph. Part 1: Simple graphs, 3. Combin. Theory Ser. B 80 (2000), 356-370. MR1794699
  4. NEDELA R.-SKOVIERA M., On graphs embeddable with short faces, In: Topics in Combinatorics and Graph Theory (R. Bodendiek, R. Henn, eds.), Physica Verlag, Heidelberg, 1990, pp. 519-529. (1990) Zbl0705.05027MR1100074
  5. NEBESKÝ L., A new characterizations of the maximum genus of graphs, Czechoslovak Math. J. 31(106) (1981), 604-613. (1981) MR0631605
  6. NEBESKÝ L., A note on upper embeddable graphs, Czechoslovak Math. J. 33(108) (1983), 37-40. (1983) Zbl0518.05029MR0687415
  7. RINGEISEN R. D., Survey of results on the maximum genus of a graph, J. Graph Theory 3 (1978), 1-13. (1978) MR0519169
  8. THOMASSEN C., Embeddings of graphs with no short noncontractible cycles, J. Combin. Theory Ser. B 42 (1990), 155-177. (1990) Zbl0704.05011MR1046752

NotesEmbed ?

top

You must be logged in to post comments.