Face size and the maximum genus of a graph. II: Nonsimple graphs
Mathematica Slovaca (2001)
- Volume: 51, Issue: 2, page 129-140
- ISSN: 0139-9918
Access Full Article
topHow to cite
topReferences
top- FU H.-TSAI M., The maximum genus of diameter three graphs, Australas. J. Combin. 14 (1996), 1187-1197. (1996) Zbl0862.05027MR1424333
- GROSS J.-TUCKER T., Topological Graph Theory, John Wiley, New York, 1987. (1987) Zbl0621.05013MR0898434
- HUANG Y.-LIU Y., Face size and the maximum genus of a graph. Part 1: Simple graphs, 3. Combin. Theory Ser. B 80 (2000), 356-370. MR1794699
- NEDELA R.-SKOVIERA M., On graphs embeddable with short faces, In: Topics in Combinatorics and Graph Theory (R. Bodendiek, R. Henn, eds.), Physica Verlag, Heidelberg, 1990, pp. 519-529. (1990) Zbl0705.05027MR1100074
- NEBESKÝ L., A new characterizations of the maximum genus of graphs, Czechoslovak Math. J. 31(106) (1981), 604-613. (1981) MR0631605
- NEBESKÝ L., A note on upper embeddable graphs, Czechoslovak Math. J. 33(108) (1983), 37-40. (1983) Zbl0518.05029MR0687415
- RINGEISEN R. D., Survey of results on the maximum genus of a graph, J. Graph Theory 3 (1978), 1-13. (1978) MR0519169
- THOMASSEN C., Embeddings of graphs with no short noncontractible cycles, J. Combin. Theory Ser. B 42 (1990), 155-177. (1990) Zbl0704.05011MR1046752