Zeros of continuous functions and the compact-open topology
Mathematica Slovaca (2003)
- Volume: 53, Issue: 5, page 515-523
- ISSN: 0232-0525
Access Full Article
topHow to cite
topVadovič, Peter. "Zeros of continuous functions and the compact-open topology." Mathematica Slovaca 53.5 (2003): 515-523. <http://eudml.org/doc/34586>.
@article{Vadovič2003,
author = {Vadovič, Peter},
journal = {Mathematica Slovaca},
keywords = {compact-open topology; continuous function; 1st Baire category set; 2nd Baire category set; residual set; dense set; nowhere dense set},
language = {eng},
number = {5},
pages = {515-523},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Zeros of continuous functions and the compact-open topology},
url = {http://eudml.org/doc/34586},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Vadovič, Peter
TI - Zeros of continuous functions and the compact-open topology
JO - Mathematica Slovaca
PY - 2003
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 53
IS - 5
SP - 515
EP - 523
LA - eng
KW - compact-open topology; continuous function; 1st Baire category set; 2nd Baire category set; residual set; dense set; nowhere dense set
UR - http://eudml.org/doc/34586
ER -
References
top- BALÁŽ V.-ŠALÁT T., Zeros of continuous functions and the structure of two function spaces, Math. Slovaca 52 (2002), 397-408. Zbl1016.26002MR1940244
- BENAVIDES T. D., How many zeros does a continuous function have?, Amer. Math. Monthly 93 (1986), 464-466. (1986) Zbl0627.26003MR0843192
- ENGELKING R., General Topology, PWN - Polish Scientifìc Publishers, Warsaw, 1977. (1977) Zbl0373.54002MR0500780
- KELLEY J. L., General Topology, D. Van Nostrand, New York, 1955. (1955) Zbl0066.16604MR0070144
- McCOY R. A.-NTANTU I., Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math. 1315, Springer-Verlag, Berlin, 1988. (1988) Zbl0647.54001MR0953314
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.