Blocks in homogeneous effect algebras and MV-algebras

Sylvia Pulmannová

Mathematica Slovaca (2003)

  • Volume: 53, Issue: 5, page 525-539
  • ISSN: 0232-0525

How to cite

top

Pulmannová, Sylvia. "Blocks in homogeneous effect algebras and MV-algebras." Mathematica Slovaca 53.5 (2003): 525-539. <http://eudml.org/doc/34587>.

@article{Pulmannová2003,
author = {Pulmannová, Sylvia},
journal = {Mathematica Slovaca},
keywords = {effect algebra; homogeneous effect algebra; compatibility; strong compatibility; Mackey decomposition; strong difference compatibility property; cover; difference-meet property; Riesz decomposition property; Riesz interpolation property; block; MV-algebra; orthocompleteness; observable},
language = {eng},
number = {5},
pages = {525-539},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Blocks in homogeneous effect algebras and MV-algebras},
url = {http://eudml.org/doc/34587},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Pulmannová, Sylvia
TI - Blocks in homogeneous effect algebras and MV-algebras
JO - Mathematica Slovaca
PY - 2003
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 53
IS - 5
SP - 525
EP - 539
LA - eng
KW - effect algebra; homogeneous effect algebra; compatibility; strong compatibility; Mackey decomposition; strong difference compatibility property; cover; difference-meet property; Riesz decomposition property; Riesz interpolation property; block; MV-algebra; orthocompleteness; observable
UR - http://eudml.org/doc/34587
ER -

References

top
  1. BERAN L., Orthomodular Lattices - Algebraic Approach, Academia, Czechoslovak Academy of Sciences/D. Reidel Publishing Company, Praha/Dordrecht, 1984. (1984) MR0785005
  2. BUSCH P.-LAHTI P. J.-MITTELSTADT P., The Quantum Theory of Measurement, Lecture Notes in Phys. New Ser. m Monogr. 31, Springer-Verlag, Berlin-Heidelberg-New York-London-Budapest, 1991. (1991) MR1176754
  3. BUSCH P.-GRABOWSKI M.-LAHTI P. J., Operational Quantum Physics, Springer-Verlag, Berlin, 1995. (1995) Zbl0863.60106MR1356220
  4. CHANG C. C., Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) MR0094302
  5. CHOVANEC F.-KÔPKA F., D -lattices, Internat. J. Theoret. Phys. 34 (1995), 1297-1302. (1995) Zbl0840.03046MR1353674
  6. CHOVANEC F.- KÔPKA F., Boolean D -posets, Tatra Mt. Math. Publ. 10 (1997), 183-197. (1997) MR1469294
  7. DVUREČENSKIJ A., On effect algebras that can be covered by M V -algebras, Internat. J. Theoret. Phys. 41 (2002), 221-229. MR1888439
  8. DVUREČENSKIJ A.-PULMANNOVÁ S., New Trends in Quantum Structures, Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava, 2000. Zbl0987.81005MR1861369
  9. FOULIS D. J.-BENNETT M. K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331-1362. (1994) Zbl1213.06004MR1304942
  10. FOULIS D. J.-GREECHIE R.-RÜTTIMANN G., Filters and supports in orthoalgebras, Internat. J. Theoret. Phys. 35 (1995), 789-802. (1995) MR1162623
  11. GIUNTINI R.-GRUEULING H., Toward a formal language for unsharp properties, Found. Phys. 19 (1994), 769-780. (1994) MR1013913
  12. JENČA G., Blocks in homogeneous effect algebras, Bull. Austral. Math. Soc. 64 (2001), 81-98. MR1848081
  13. JENČA G., A Cantor-Bernstein type theorem for effect algebras, Algebra Universalis 48 (2002), 399-411. Zbl1061.06020MR1967089
  14. JENČA G.-PULMANNOVÁ S., Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis 47 (2002), 443-477. Zbl1063.06011MR1923079
  15. JENČA G.-RIEČANOVÁ Z., On sharp elements in lattice ordered effect algebras, BUSEFAL 80 (1999), 24-29. (1999) 
  16. KALMBACH G., Orthomodular Lattices, Academic Press, London-New York, 1983. (1983) Zbl0528.06012MR0716496
  17. KÔPKA F., Compatibility in D -posets, Internat. J. Theoret. Phys. 34 (1995), 1525-1531. (1995) Zbl0851.03020MR1353696
  18. KÔPKA F.-CHOVANEC F., D -posets, Math. Slovaca 44 (1994), 21-34. (1994) Zbl0789.03048MR1290269
  19. LOCK P. L.-HARDEGREE G. M., Connections among quantum logics: Part 2. Quantum event logic, Internat. J. Theoret. Phуs. 24 (1985), 55-61. (1985) MR0791832
  20. PTÁK P.-PULMANNOVÁ S., Orthomodular Structures as Quantum Logics, Kluwer Academic Publ., Dordrecht-Boston-London, 1991. (1991) Zbl0743.03039MR1176314
  21. PULMANNOVÁ S., On connections among some orthomodular structures, Demonstratio Math. 30 (1997), 313-328. (1997) Zbl0947.06004MR1469597
  22. PULMANNOVÁ S., Compatibility and decompositions of effects, J. Math. Phys. 43 (2002), 2817-2830. Zbl1059.81016MR1893702
  23. PULMANNOVÁ S., A note on observables on M V -algebras, Soft Computing 4 (2000), 45-48. Zbl1005.06006
  24. RAVINDRAN K., On a Structure Theory of Effect Algebras, PhD Theses, Kansas State Univ., Manhattan, Kansas, 1996. (1996) MR2694228
  25. RIEČANOVÁ Z., A generalization of blocks for lattice effect algebras, Internat. J. Theoret. Phys. 39 (2000), 855-865. MR1762594
  26. RIEČANOVÁ Z., On order topological continuity of effect algebra operations, In: Contributions to General Algebra 12, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 349-354. Zbl0960.03054MR1778747
  27. RIEČANOVÁ Z., Orthogonal sets in effect algebras, Demonstratio Math. 34 (2001), 525-531. Zbl0989.03071MR1853730
  28. SARYMSAKOV T. A., al, Uporyadochennye algebry, FAN, Tashkent, 1983. (Russian) (1983) Zbl0542.46001MR0781349
  29. SCHRÖDER B., On three notions of orthosummability in orthoalgebras, Internat. J. Theoret. Phys. 34 (1999), 3305-3313. (1999) Zbl0957.03061MR1764466

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.