Ring-like structures corresponding to generalized orthomodular lattices
Ivan Chajda; Helmut Länger; Maciej Mączyński
Mathematica Slovaca (2004)
- Volume: 54, Issue: 2, page 143-150
- ISSN: 0139-9918
Access Full Article
topHow to cite
topChajda, Ivan, Länger, Helmut, and Mączyński, Maciej. "Ring-like structures corresponding to generalized orthomodular lattices." Mathematica Slovaca 54.2 (2004): 143-150. <http://eudml.org/doc/34592>.
@article{Chajda2004,
author = {Chajda, Ivan, Länger, Helmut, Mączyński, Maciej},
journal = {Mathematica Slovaca},
keywords = {generalized orthomodular lattice; Boolean pseudoring; arithmetical; congruence regular; distributive; associative; Boolean ring},
language = {eng},
number = {2},
pages = {143-150},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Ring-like structures corresponding to generalized orthomodular lattices},
url = {http://eudml.org/doc/34592},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Chajda, Ivan
AU - Länger, Helmut
AU - Mączyński, Maciej
TI - Ring-like structures corresponding to generalized orthomodular lattices
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 2
SP - 143
EP - 150
LA - eng
KW - generalized orthomodular lattice; Boolean pseudoring; arithmetical; congruence regular; distributive; associative; Boolean ring
UR - http://eudml.org/doc/34592
ER -
References
top- BERAN L., Orthomodular Lattices, Algebraic Approach, Academia/Reidel, Prague/Dordrecht, 1984. (1984) MR0785005
- CHAJDA I., Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (1996), 405-411. (1996) Zbl0879.06003MR1408295
- CHAJDA I.-EIGENTHALER G., A note on orthopseudorings and Boolean quasirings, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83-94. (1998) Zbl1040.06003MR1749914
- CHAJDA I.-LÄNGER H., Ring-like operations in pseudocomplemented semilattices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 87-95. Zbl0968.06004MR1782088
- DILWORTH R. P., The structure of relatively complemented lattices, Ann. of Math. (2) 51 (1950), 348-359. (1950) Zbl0036.01802MR0033795
- DORFER G., Some properties of congruence relations on orthomodular lattices, Discuss. Math. Gen. Algebra Appl. 21 (2001), 57-66. Zbl1011.06011MR1868617
- DORNINGER D.-LÄNGER H.-MACZYNSKI M., The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232. (1997) Zbl0879.06005MR1446613
- DORNINGER D.-LÄNGER H.-MACZYNSKI M., On ring-like structures occurring in axiomatic quantum mechanics, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279-289. (1997) MR1632939
- DORNINGER D.-LÄNGER H.-MACZYNSKI M., On ring-like structures induced by Mackey's probability function, Rep. Math. Phys. 43 (1999), 499-515. (1999) Zbl1056.81004MR1713402
- DORNINGER D.-LÄNGER H.-MACZYNSKI M., Lattice properties of ring-like quantum logics, Internat. J. Theoret. Phys. 39 (2000), 1015-1026. Zbl0967.03055MR1779170
- DORNINGER D.-LÄNGER H.-M4CZYNSKI M., Concepts of measures on ring-like quantum logics, Rep. Math. Phys. 47 (2001), 167-176. Zbl0980.81009MR1836328
- DORNINGER D.-LÄNGER H.-MACZYNSKI M., Ring-like structures with unique symmetric difference related to quantum logic, Discuss. Math. Gen. Algebra Appl. 21 (2001), 239-253. Zbl1014.81003MR1894319
- JANOWITZ M. F., A note on generalized orthomodular lattices, J. Natur. Sci. Math. 8 (1968), 89-94. (1968) Zbl0169.02104MR0231762
- KALMBACH G., Orthomodular Lattices, Academic Press, London, 1983. (1983) Zbl0528.06012MR0716496
- LÄNGER H., Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105. (1998) Zbl0939.03075MR1655082
- PTÁK P.-PULMANNOVÁ S., Orthomodular Structures as Quantum Logics, Kluwer Acad. Publ., Dordrecht, 1991. (1991) Zbl0743.03039MR1176314
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.