Convergences on lattice ordered groups with a finite number of disjoint elements

Ján Jakubík

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 3, page 289-299
  • ISSN: 0139-9918

How to cite

top

Jakubík, Ján. "Convergences on lattice ordered groups with a finite number of disjoint elements." Mathematica Slovaca 56.3 (2006): 289-299. <http://eudml.org/doc/34620>.

@article{Jakubík2006,
author = {Jakubík, Ján},
journal = {Mathematica Slovaca},
keywords = {lattice ordered group; sequential convergence; disjoint elements},
language = {eng},
number = {3},
pages = {289-299},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Convergences on lattice ordered groups with a finite number of disjoint elements},
url = {http://eudml.org/doc/34620},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Jakubík, Ján
TI - Convergences on lattice ordered groups with a finite number of disjoint elements
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 3
SP - 289
EP - 299
LA - eng
KW - lattice ordered group; sequential convergence; disjoint elements
UR - http://eudml.org/doc/34620
ER -

References

top
  1. CONRAD P., The structure of a lattice-ordered group with a finite number of disjoint elements, Michigan Math. J. 7 (1960), 171-180. (1960) Zbl0103.01501MR0116059
  2. FUCHS L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. (1963) Zbl0137.02001MR0171864
  3. HARMINC M., Sequential convergence on abelian lattice-ordered groups. In: Convergence Structures, 1984. Math. Res. 24, Akademie Verlag, Berlin, 1985, pp. 153-158. (1985) MR0835480
  4. HARMINC M., The cardinality of the system of all convergences on an abelian lattice ordered group, Czechoslovak Math. J. 37 (1987), 533-546. (1987) MR0913986
  5. HARMINC M., Sequential convergences on lattice ordered groups, Czechoslovak Math. J. 39 (1989), 232-238. (1989) MR0992130
  6. HARMINC M., Convergences on Lattices Ordered Groups, Dissertation, Math. Inst. Slovak Acad. Sci., 1986. (Slovak) (1986) 
  7. HARMINC M.-JAKUBÍK J., Maximal convergences and minimal proper convergences in l-groups, Czechoslovak Math. J. 39 (1989), 631-640. (1989) MR1017998
  8. JAKUBÍK J., Convergences and complete distributivity of lattice ordered groups, Math. Slovaca 38 (1988), 269-272. (1988) Zbl0662.06005MR0977905
  9. JAKUBÍK J., On some types of kernels of a convergence l-group, Czechoslovak Math. J. 39 (1989), 239-247. (1989) Zbl0748.06006MR0992131
  10. JAKUBÍK J., Lattice ordered groups having a largest convergence, Czechoslovak Math. J. 39 (1989), 717-729. (1989) Zbl0713.06009MR1018008
  11. JAKUBÍK J., Convergences and higher degrees of distributivity of lattice ordered groups and of Boolean algebras, Czechoslovak Math. J. 40 (1990), 453-458. (1990) Zbl0731.06010MR1065024
  12. JAKUBÍK J., Sequential convergences in l-groups without Urysohn's axiom, Czechoslovak Math. J. 42 (1992), 101-116. (1992) Zbl0770.06008MR1152174
  13. JAKUBÍK J., Nearly disjoint sequences in convergence l-groups, Math. Bohem. 125 (2000), 139-144. MR1768802
  14. JAKUBÍK J., On iterated limits of subsets of a convergence l-groups, Math. Bohem. 126 (2001), 53-61. MR1826470
  15. JAKUBÍK J., Konvexe Ketten in l-Gruppen, Časopis Pest. Mat. 84 (1959), 53-63. (1959) Zbl0083.01803MR0104740

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.