Sequential convergences on pseudo MV-algebras

Ján Jakubík

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 5, page 501-510
  • ISSN: 0139-9918

How to cite

top

Jakubík, Ján. "Sequential convergences on pseudo MV-algebras." Mathematica Slovaca 56.5 (2006): 501-510. <http://eudml.org/doc/34625>.

@article{Jakubík2006,
author = {Jakubík, Ján},
journal = {Mathematica Slovaca},
keywords = {pseudo MV-algebra; unital lattice ordered group; sequential convergence; orthogonal subset},
language = {eng},
number = {5},
pages = {501-510},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Sequential convergences on pseudo MV-algebras},
url = {http://eudml.org/doc/34625},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Jakubík, Ján
TI - Sequential convergences on pseudo MV-algebras
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 5
SP - 501
EP - 510
LA - eng
KW - pseudo MV-algebra; unital lattice ordered group; sequential convergence; orthogonal subset
UR - http://eudml.org/doc/34625
ER -

References

top
  1. CHOVANEC F.-KOPKA F., Difference posets in the quantum structure background, Internat. J. Theoret. Phуs. 39 (2000), 571 583. MR1790895
  2. CIGNOLI R.-D'OTTAVIANO I. M. I.-MUNDICI D., Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000. Zbl0937.06009MR1786097
  3. CONRAD P., The structure of a lattice-ordered group with a finite number of disjoint elements, Michigan Math. J. 7 (1960), 171-180. (1960) Zbl0103.01501MR0116059
  4. DVUREČENSKIJ A., Pseudo M V -algebras are intervals in -groups, J. Aust. Math. Soc. 72 (2002), 427-445. Zbl1027.06014MR1902211
  5. FOULIS D.-BENNET M. K., Effect algebras and unsharp quantum logics, Found Phуs. 24 (1994), 1331 1352. (1994) Zbl1213.06004MR1304942
  6. FRIČ R., Coproducts of D-posets and their application to probability, Internat. J. Theoret. Phуs. 43 (2004), 1625-1633. Zbl1070.81009MR2108299
  7. GEORGESCU G.-IORGULESCU A., Pseudo MV-algebras: a noncommutative extension of MV-algebras, In: Information technology. Proceedings of the 4th International Sуmposium on Economic Informatics Held in Bucharest, Romania, Maу 6-9, 1999. (1. Smeureanu et al., eds.), Editura Inforec, Bucharest, 1999, pp. 961-968. (1999) Zbl0985.06007MR1730100
  8. GEORGESCU G.-IORGULESCU A., Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95-135. Zbl1014.06008MR1817439
  9. HARMINC M., Sequential convergences in lattice ordered groups, Czechoslovak Math. J. 39 (1989), 232-238. (1989) MR0992130
  10. JAKUBÍK J., Lattice ordered groups having a largest convergence, Czechoslovak Math. J. 39 (1989), 717-729. (1989) Zbl0713.06009MR1018008
  11. JAKUBÍK J., Sequential convergences on MV-algebras, Czechoslovak Math. J. 45 (1995), 709-726. (1995) Zbl0845.06009MR1354928
  12. JAKUBÍK J., Convergences on lattice ordered groups with a finite number of disjoint elements, Math. Slovaca 56 (2006), 289-299. Zbl1141.06016MR2250080
  13. RACHŮNEK J., A noncommutative generalization of MV-algebras, Czechoslovak Math. J. 25 (2002), 255-273. MR1905434

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.