FC-modules with an application to cotorsion pairs
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 4, page 513-519
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGuo, Yonghua. "FC-modules with an application to cotorsion pairs." Commentationes Mathematicae Universitatis Carolinae 50.4 (2009): 513-519. <http://eudml.org/doc/35126>.
@article{Guo2009,
abstract = {Let $R$ be a ring. A left $R$-module $M$ is called an FC-module if $M^\{+\}= \operatorname\{Hom\}_\{\mathbb \{Z\}\}(M, \mathbb \{Q\}/\mathbb \{Z\})$ is a flat right $R$-module. In this paper, some homological properties of FC-modules are given. Let $n$ be a nonnegative integer and $\mathcal \{FC\}_\{n\}$ the class of all left $R$-modules $M$ such that the flat dimension of $M^\{+\}$ is less than or equal to $n$. It is shown that $(\{^\{\bot \}(\mathcal \{FC\}_\{n\}^\{\bot \})\}, \mathcal \{FC\}_\{n\}^\{\bot \})$ is a complete cotorsion pair and if $R$ is a ring such that $\operatorname\{fd\}((\{_RR\})^\{+\})\le n$ and $\mathcal \{FC\}_\{n\}$ is closed under direct sums, then $(\mathcal \{FC\}_\{n\}, \mathcal \{FC\}_\{n\}^\{\bot \})$ is a perfect cotorsion pair. In particular, some known results are obtained as corollaries.},
author = {Guo, Yonghua},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {character modules; flat modules; cotorsion pairs; FC-modules; character modules; flat modules; cotorsion pairs; flat dimension},
language = {eng},
number = {4},
pages = {513-519},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {FC-modules with an application to cotorsion pairs},
url = {http://eudml.org/doc/35126},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Guo, Yonghua
TI - FC-modules with an application to cotorsion pairs
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 4
SP - 513
EP - 519
AB - Let $R$ be a ring. A left $R$-module $M$ is called an FC-module if $M^{+}= \operatorname{Hom}_{\mathbb {Z}}(M, \mathbb {Q}/\mathbb {Z})$ is a flat right $R$-module. In this paper, some homological properties of FC-modules are given. Let $n$ be a nonnegative integer and $\mathcal {FC}_{n}$ the class of all left $R$-modules $M$ such that the flat dimension of $M^{+}$ is less than or equal to $n$. It is shown that $({^{\bot }(\mathcal {FC}_{n}^{\bot })}, \mathcal {FC}_{n}^{\bot })$ is a complete cotorsion pair and if $R$ is a ring such that $\operatorname{fd}(({_RR})^{+})\le n$ and $\mathcal {FC}_{n}$ is closed under direct sums, then $(\mathcal {FC}_{n}, \mathcal {FC}_{n}^{\bot })$ is a perfect cotorsion pair. In particular, some known results are obtained as corollaries.
LA - eng
KW - character modules; flat modules; cotorsion pairs; FC-modules; character modules; flat modules; cotorsion pairs; flat dimension
UR - http://eudml.org/doc/35126
ER -
References
top- Anderson F.W., Fuller K.R., Rings and Categories of Modules, 2nd ed., Graduate Texts in Mathematics, 13, Springer, New York, 1992. Zbl0765.16001MR1245487
- Asensio Mayor J., Martinez Hernandez J., 10.1007/BF02767358, Israel J. Math. 62 (1988), no. 1, 123--128. Zbl0658.13010MR0947834DOI10.1007/BF02767358
- Asensio Mayor J., Martinez Hernandez J., 10.1007/BF01188669, Arch. Math. (Basel) 54 (1990), no. 5, 430--435. Zbl0658.13010MR1049197DOI10.1007/BF01188669
- Cheatham T.J., Stone D.R., 10.1090/S0002-9939-1981-0593450-2, Proc. Amer. Math. Soc. 81 (1981), no. 2, 175--177. Zbl0458.16014MR0593450DOI10.1090/S0002-9939-1981-0593450-2
- Colby R.R., 10.1016/0021-8693(75)90049-6, J. Algebra 35 (1975), 239--252. Zbl0306.16015MR0376763DOI10.1016/0021-8693(75)90049-6
- Couchot F., 10.1080/00927878208822720, Comm. Algebra 10 (1982), no. 4, 339--360. Zbl0484.16010MR0649340DOI10.1080/00927878208822720
- Ding N.Q., Chen J.L., 10.1007/BF02599307, Manuscripta Math. 78 (1993), 165--177. Zbl0804.16005MR1202159DOI10.1007/BF02599307
- Eklof P.C., Trlifaj J., 10.1112/blms/33.1.41, Bull. London Math. Soc. 33 (2001), no. 1, 41--51. Zbl1030.16004MR1798574DOI10.1112/blms/33.1.41
- Enochs E.E., Jenda O.M.G., Relative Homological Algebra, de Gruyter Expositions in Mathematics, 30, de Gruyter, Berlin, 2000. Zbl0952.13001MR1753146
- Enochs E.E., Jenda O.M.G., Xu J., The existence of envelopes, Rend. Sem. Mat. Univ. Padova 90 (1990), 45--51. Zbl0803.16001MR1257131
- Fieldhouse D.J., 10.1007/BF02566844, Comment. Math. Helv. 46 (1971), 274-276. Zbl0258.16028MR0294408DOI10.1007/BF02566844
- Göbel R., Trlifaj J., Approximations and Endomorphism Algebras of Modules, de Gruyter Expositions in Mathematics, 41, de Gruyter, Berlin, 2006. MR2251271
- Holm H., Jøgensen P., Covers, preenvelopes, and purity, Illinois J. Math. 52 (2008), 691--703. MR2524661
- Jain S., 10.1090/S0002-9939-1973-0323828-9, Proc. Amer. Math. Soc. 41 (1973), no. 2, 437--442. Zbl0246.16013MR0323828DOI10.1090/S0002-9939-1973-0323828-9
- Mao L.X., Ding N.Q., Envelopes and covers by modules of finite FP-injective and flat dimensions, Comm. Algebra 35 (2007), 835--849. Zbl1122.16007MR2305235
- Ramamurthi V.S., On modules with projective character modules, Math. Japon. 23 (1978), 181--184. Zbl0412.16015MR0517797
- Rada J., Saorín M., 10.1080/00927879808826172, Comm. Algebra 26 (1998), 899--912. Zbl0908.16003MR1606190DOI10.1080/00927879808826172
- Stenström B., 10.1112/jlms/s2-2.2.323, J. London Math. Soc. 2 (1970), 323--329. MR0258888DOI10.1112/jlms/s2-2.2.323
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.