Symmetric difference on orthomodular lattices and -valued states
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 4, page 535-547
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMatoušek, Milan, and Pták, Pavel. "Symmetric difference on orthomodular lattices and $Z_2$-valued states." Commentationes Mathematicae Universitatis Carolinae 50.4 (2009): 535-547. <http://eudml.org/doc/35128>.
@article{Matoušek2009,
abstract = {The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of $Z_2$-valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.},
author = {Matoušek, Milan, Pták, Pavel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {orthomodular lattice; quantum logic; symmetric difference; Boolean algebra; group-valued state; orthomodular lattice; quantum logic; symmetric difference; Boolean algebra; group-valued state},
language = {eng},
number = {4},
pages = {535-547},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Symmetric difference on orthomodular lattices and $Z_2$-valued states},
url = {http://eudml.org/doc/35128},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Matoušek, Milan
AU - Pták, Pavel
TI - Symmetric difference on orthomodular lattices and $Z_2$-valued states
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 4
SP - 535
EP - 547
AB - The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of $Z_2$-valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.
LA - eng
KW - orthomodular lattice; quantum logic; symmetric difference; Boolean algebra; group-valued state; orthomodular lattice; quantum logic; symmetric difference; Boolean algebra; group-valued state
UR - http://eudml.org/doc/35128
ER -
References
top- Beran L., Orthomodular Lattices, Algebraic Approach, D. Reidel, Dordrecht, 1985. Zbl0558.06008MR0784029
- Bruns G., Harding J., Algebraic aspects of orthomodular lattices, in Coecke B., Moore D. and Wilce A., Eds., Current Research in Operational Quantum Logic, 2000, pp. 37--65. Zbl0955.06003MR1907155
- Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht, and Ister Science, Bratislava, 2000. MR1861369
- Greechie R.J., 10.1016/0097-3165(71)90015-X, J. Combinatorial Theory 10 (1971), 119--132. Zbl0219.06007MR0274355DOI10.1016/0097-3165(71)90015-X
- Hamhalter J., Quantum Measure Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. Zbl1038.81003MR2015280
- Handbook of Quantum Logic and Quantum Structures, ed. by K. Engesser, D.M. Gabbay and D. Lehmann, Elsevier, 2007. Zbl1184.81003MR2408886
- Gudder S.P., Stochastic Methods in Quantum Mechanics, North-Holland, New York-Oxford, 1979. Zbl0439.46047MR0543489
- Harding J., Jager E., Smith D., 10.1007/s10773-005-3981-x, Internat. J. Theoret. Phys. 44 (2005), 539--548. Zbl1130.81306MR2153018DOI10.1007/s10773-005-3981-x
- Kalmbach G., Orthomodular Lattices, Academic Press, London, 1983. Zbl0554.06009MR0716496
- Maeda F., Maeda S., Theory of Symmetric Lattices, Springer, Berlin-Heidelberg-New York, 1970. Zbl0361.06010MR0282889
- Matoušek M., 10.1007/s00012-009-2105-5, Algebra Universalis 60 (2009), 185--215. MR2491422DOI10.1007/s00012-009-2105-5
- Matoušek M., Pták P., 10.1007/s11083-008-9102-8, Order 26 (2009), 1--21. MR2487165DOI10.1007/s11083-008-9102-8
- Navara M., Pták P., Rogalewicz V., 10.2140/pjm.1988.135.361, Pacific J. Math. 135 (1988), 361--369. MR0968618DOI10.2140/pjm.1988.135.361
- Navara M., 10.1090/S0002-9939-1994-1191871-X, Proc. Amer. Math. Soc. 122 (1994), 7--12. Zbl0809.06008MR1191871DOI10.1090/S0002-9939-1994-1191871-X
- Navara M., Pták P., 10.1023/B:IJTP.0000048805.76224.2d, Internat. J. Theoret. Phys. 43 (2004), 1595--1598. MR2108296DOI10.1023/B:IJTP.0000048805.76224.2d
- Pták P., Pulmannová S., Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers, Dordrecht-Boston-London, 1991. MR1176314
- Svozil K., Tkadlec J., 10.1063/1.531710, J. Math. Phys. 37 (1996), 5380--5401. MR1417146DOI10.1063/1.531710
- Varadarajan V.S., Geometry of Quantum Theory I, II, Van Nostrand, Princeton, 1968, 1970.
- Weber H., 10.1006/jmaa.1994.1133, J. Math. Anal. Appl. 183 (1994), 89--93. Zbl0797.06010MR1273434DOI10.1006/jmaa.1994.1133
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.