Symmetric difference on orthomodular lattices and Z 2 -valued states

Milan Matoušek; Pavel Pták

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 4, page 535-547
  • ISSN: 0010-2628

Abstract

top
The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of Z 2 -valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.

How to cite

top

Matoušek, Milan, and Pták, Pavel. "Symmetric difference on orthomodular lattices and $Z_2$-valued states." Commentationes Mathematicae Universitatis Carolinae 50.4 (2009): 535-547. <http://eudml.org/doc/35128>.

@article{Matoušek2009,
abstract = {The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of $Z_2$-valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.},
author = {Matoušek, Milan, Pták, Pavel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {orthomodular lattice; quantum logic; symmetric difference; Boolean algebra; group-valued state; orthomodular lattice; quantum logic; symmetric difference; Boolean algebra; group-valued state},
language = {eng},
number = {4},
pages = {535-547},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Symmetric difference on orthomodular lattices and $Z_2$-valued states},
url = {http://eudml.org/doc/35128},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Matoušek, Milan
AU - Pták, Pavel
TI - Symmetric difference on orthomodular lattices and $Z_2$-valued states
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 4
SP - 535
EP - 547
AB - The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of $Z_2$-valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.
LA - eng
KW - orthomodular lattice; quantum logic; symmetric difference; Boolean algebra; group-valued state; orthomodular lattice; quantum logic; symmetric difference; Boolean algebra; group-valued state
UR - http://eudml.org/doc/35128
ER -

References

top
  1. Beran L., Orthomodular Lattices, Algebraic Approach, D. Reidel, Dordrecht, 1985. Zbl0558.06008MR0784029
  2. Bruns G., Harding J., Algebraic aspects of orthomodular lattices, in Coecke B., Moore D. and Wilce A., Eds., Current Research in Operational Quantum Logic, 2000, pp. 37--65. Zbl0955.06003MR1907155
  3. Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht, and Ister Science, Bratislava, 2000. MR1861369
  4. Greechie R.J., 10.1016/0097-3165(71)90015-X, J. Combinatorial Theory 10 (1971), 119--132. Zbl0219.06007MR0274355DOI10.1016/0097-3165(71)90015-X
  5. Hamhalter J., Quantum Measure Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. Zbl1038.81003MR2015280
  6. Handbook of Quantum Logic and Quantum Structures, ed. by K. Engesser, D.M. Gabbay and D. Lehmann, Elsevier, 2007. Zbl1184.81003MR2408886
  7. Gudder S.P., Stochastic Methods in Quantum Mechanics, North-Holland, New York-Oxford, 1979. Zbl0439.46047MR0543489
  8. Harding J., Jager E., Smith D., 10.1007/s10773-005-3981-x, Internat. J. Theoret. Phys. 44 (2005), 539--548. Zbl1130.81306MR2153018DOI10.1007/s10773-005-3981-x
  9. Kalmbach G., Orthomodular Lattices, Academic Press, London, 1983. Zbl0554.06009MR0716496
  10. Maeda F., Maeda S., Theory of Symmetric Lattices, Springer, Berlin-Heidelberg-New York, 1970. Zbl0361.06010MR0282889
  11. Matoušek M., 10.1007/s00012-009-2105-5, Algebra Universalis 60 (2009), 185--215. MR2491422DOI10.1007/s00012-009-2105-5
  12. Matoušek M., Pták P., 10.1007/s11083-008-9102-8, Order 26 (2009), 1--21. MR2487165DOI10.1007/s11083-008-9102-8
  13. Navara M., Pták P., Rogalewicz V., 10.2140/pjm.1988.135.361, Pacific J. Math. 135 (1988), 361--369. MR0968618DOI10.2140/pjm.1988.135.361
  14. Navara M., 10.1090/S0002-9939-1994-1191871-X, Proc. Amer. Math. Soc. 122 (1994), 7--12. Zbl0809.06008MR1191871DOI10.1090/S0002-9939-1994-1191871-X
  15. Navara M., Pták P., 10.1023/B:IJTP.0000048805.76224.2d, Internat. J. Theoret. Phys. 43 (2004), 1595--1598. MR2108296DOI10.1023/B:IJTP.0000048805.76224.2d
  16. Pták P., Pulmannová S., Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers, Dordrecht-Boston-London, 1991. MR1176314
  17. Svozil K., Tkadlec J., 10.1063/1.531710, J. Math. Phys. 37 (1996), 5380--5401. MR1417146DOI10.1063/1.531710
  18. Varadarajan V.S., Geometry of Quantum Theory I, II, Van Nostrand, Princeton, 1968, 1970. 
  19. Weber H., 10.1006/jmaa.1994.1133, J. Math. Anal. Appl. 183 (1994), 89--93. Zbl0797.06010MR1273434DOI10.1006/jmaa.1994.1133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.