About remainders in compactifications of homogeneous spaces
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 4, page 607-613
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBasile, D., and Bella, Angelo. "About remainders in compactifications of homogeneous spaces." Commentationes Mathematicae Universitatis Carolinae 50.4 (2009): 607-613. <http://eudml.org/doc/35134>.
@article{Basile2009,
abstract = {We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space $X$, every remainder of $X$ is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.},
author = {Basile, D., Bella, Angelo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {remainders in compactifications; homogeneous spaces; compactification; homogeneous space},
language = {eng},
number = {4},
pages = {607-613},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {About remainders in compactifications of homogeneous spaces},
url = {http://eudml.org/doc/35134},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Basile, D.
AU - Bella, Angelo
TI - About remainders in compactifications of homogeneous spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 4
SP - 607
EP - 613
AB - We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space $X$, every remainder of $X$ is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.
LA - eng
KW - remainders in compactifications; homogeneous spaces; compactification; homogeneous space
UR - http://eudml.org/doc/35134
ER -
References
top- Arhangel'skii A.V., Bicompact sets and the topology of spaces, Dokl. Akad. Nauk SSSR 150 (1963), 9–12; MR MR0150733 (27 #720). MR0150733
- Arhangel'skii A.V., Two types of remainders of topological groups, Comment. Math. Univ. Carolin. 49 (2008), no. 1, 119--126. MR2433629
- Arhangel'skii A.V., The Baire property in remainders of topological groups and other results, Comment. Math. Univ. Carolin. 50 (2009), no. 2, 273--279. MR2537836
- Basile D., van Mill J., A homogeneous space of point-countable type but not of countable type, Comment. Math. Univ. Carolin. 48 (2007), 459--463. MR2374127
- Basile D., van Mill J., Ridderbos G.J., 10.4064/cm113-1-6, Colloq. Math. 113 (2008), 91--104. MR2399666DOI10.4064/cm113-1-6
- Dow A., Pearl E., 10.1090/S0002-9939-97-03998-1, Proc. Amer. Math. Soc. 125 (1997), no. 8, 2503--2510. Zbl0963.54002MR1416083DOI10.1090/S0002-9939-97-03998-1
- Engelking R., General Topology, second ed., Heldermann, Berlin, 1989; MR MR2259500. Zbl0684.54001MR1039321
- Gerlits J., Juhász I., Szentmiklóssy Z., Two improvements on Tkačenko's addition theorem, Comment. Math. Univ. Carolin. 46 (2005), no. 4, 705--710; MR MR2259500 (2008f:54035). Zbl1121.54041MR2259500
- Henriksen M., Isbell J.R., 10.1215/S0012-7094-58-02509-2, Duke Math. J. 25 (1957), 83--105. Zbl0081.38604MR0096196DOI10.1215/S0012-7094-58-02509-2
- Ismail M., Cardinal functions of homogeneous spaces and topological groups, Math. Japon. 26 (1981), no. 6, 635--646; MR MR649371 (83g:54003). Zbl0479.54003MR0649371
- Juhász I., Cardinal functions in topology --- ten years later, second ed., Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980; MR MR 576927 (82a:54002). MR0576927
- Šapirovskii B.E., -character and -weight in bicompacta, Dokl. Akad. Nauk SSSR 223 (1975), no. 4, 799–802; MR MR 04110632 (53 #14380). MR0410632
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.