About remainders in compactifications of homogeneous spaces

D. Basile; Angelo Bella

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 4, page 607-613
  • ISSN: 0010-2628

Abstract

top
We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space X , every remainder of X is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.

How to cite

top

Basile, D., and Bella, Angelo. "About remainders in compactifications of homogeneous spaces." Commentationes Mathematicae Universitatis Carolinae 50.4 (2009): 607-613. <http://eudml.org/doc/35134>.

@article{Basile2009,
abstract = {We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space $X$, every remainder of $X$ is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.},
author = {Basile, D., Bella, Angelo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {remainders in compactifications; homogeneous spaces; compactification; homogeneous space},
language = {eng},
number = {4},
pages = {607-613},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {About remainders in compactifications of homogeneous spaces},
url = {http://eudml.org/doc/35134},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Basile, D.
AU - Bella, Angelo
TI - About remainders in compactifications of homogeneous spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 4
SP - 607
EP - 613
AB - We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space $X$, every remainder of $X$ is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.
LA - eng
KW - remainders in compactifications; homogeneous spaces; compactification; homogeneous space
UR - http://eudml.org/doc/35134
ER -

References

top
  1. Arhangel'skii A.V., Bicompact sets and the topology of spaces, Dokl. Akad. Nauk SSSR 150 (1963), 9–12; MR MR0150733 (27 #720). MR0150733
  2. Arhangel'skii A.V., Two types of remainders of topological groups, Comment. Math. Univ. Carolin. 49 (2008), no. 1, 119--126. MR2433629
  3. Arhangel'skii A.V., The Baire property in remainders of topological groups and other results, Comment. Math. Univ. Carolin. 50 (2009), no. 2, 273--279. MR2537836
  4. Basile D., van Mill J., A homogeneous space of point-countable type but not of countable type, Comment. Math. Univ. Carolin. 48 (2007), 459--463. MR2374127
  5. Basile D., van Mill J., Ridderbos G.J., 10.4064/cm113-1-6, Colloq. Math. 113 (2008), 91--104. MR2399666DOI10.4064/cm113-1-6
  6. Dow A., Pearl E., 10.1090/S0002-9939-97-03998-1, Proc. Amer. Math. Soc. 125 (1997), no. 8, 2503--2510. Zbl0963.54002MR1416083DOI10.1090/S0002-9939-97-03998-1
  7. Engelking R., General Topology, second ed., Heldermann, Berlin, 1989; MR MR2259500. Zbl0684.54001MR1039321
  8. Gerlits J., Juhász I., Szentmiklóssy Z., Two improvements on Tkačenko's addition theorem, Comment. Math. Univ. Carolin. 46 (2005), no. 4, 705--710; MR MR2259500 (2008f:54035). Zbl1121.54041MR2259500
  9. Henriksen M., Isbell J.R., 10.1215/S0012-7094-58-02509-2, Duke Math. J. 25 (1957), 83--105. Zbl0081.38604MR0096196DOI10.1215/S0012-7094-58-02509-2
  10. Ismail M., Cardinal functions of homogeneous spaces and topological groups, Math. Japon. 26 (1981), no. 6, 635--646; MR MR649371 (83g:54003). Zbl0479.54003MR0649371
  11. Juhász I., Cardinal functions in topology --- ten years later, second ed., Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980; MR MR 576927 (82a:54002). MR0576927
  12. Šapirovskii B.E., π -character and π -weight in bicompacta, Dokl. Akad. Nauk SSSR 223 (1975), no. 4, 799–802; MR MR 04110632 (53 #14380). MR0410632

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.