On pseudoprimes having special forms and a solution of K. Szymiczek’s problem
Acta Mathematica Universitatis Ostraviensis (2005)
- Volume: 13, Issue: 1, page 57-71
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topRotkiewicz, Andrzej. "On pseudoprimes having special forms and a solution of K. Szymiczek’s problem." Acta Mathematica Universitatis Ostraviensis 13.1 (2005): 57-71. <http://eudml.org/doc/35153>.
@article{Rotkiewicz2005,
abstract = {We use the properties of $p$-adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.},
author = {Rotkiewicz, Andrzej},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {Pseudoprime; Aurifeuillian pseudoprimes; cyclotomic pseudoprime; strong pseudoprime; superpseudoprimes; pseudoprimes; Aurifeuillian pseudoprimes; cyclotomic pseudoprime; strong pseudoprime; superpseudoprimes},
language = {eng},
number = {1},
pages = {57-71},
publisher = {University of Ostrava},
title = {On pseudoprimes having special forms and a solution of K. Szymiczek’s problem},
url = {http://eudml.org/doc/35153},
volume = {13},
year = {2005},
}
TY - JOUR
AU - Rotkiewicz, Andrzej
TI - On pseudoprimes having special forms and a solution of K. Szymiczek’s problem
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2005
PB - University of Ostrava
VL - 13
IS - 1
SP - 57
EP - 71
AB - We use the properties of $p$-adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
LA - eng
KW - Pseudoprime; Aurifeuillian pseudoprimes; cyclotomic pseudoprime; strong pseudoprime; superpseudoprimes; pseudoprimes; Aurifeuillian pseudoprimes; cyclotomic pseudoprime; strong pseudoprime; superpseudoprimes
UR - http://eudml.org/doc/35153
ER -
References
top- Alford W.R., Granville A., Pomerance C., 10.2307/2118576, , Ann. of Math. 140 (1994), 703–722. (1994) Zbl0816.11005MR1283874DOI10.2307/2118576
- Brillhart J., Lehmer D. H., Selfridge L., Tuckerman B., Wagstaff S. S., Jr., Factorizations of , up to high powers, , Contemporary Mathematics, Vol. 22, American Mathematical Society, Providence 1983. (1983)
- Cipolla M., 10.1007/BF02419871, , Annali di Matematica (3) 9 (1904), 139–160. (1904) DOI10.1007/BF02419871
- Dickson L. E., History of the Theory of Numbers, , vol. I, New York 1952. (1952)
- Duparc H. J. A., Enige generalizaties van de getallen Van Poulet en Carmichael, , Math. Centrum Amsterdam, Rapport Z. W. 1956-005. (1956)
- Erdős P., 10.2307/2307640, , Amer. Math. Monthly 57 (1950), 404–407. (1950) MR0036259DOI10.2307/2307640
- Granville A. J., The prime -tuplets conjecture implies that there are arbitrarity long arithmetic progressions of Carmichael numbers, , (written communication of December 1995). (1995)
- Halberstam H., Rotkiewicz A., A gap theorem for pseudoprimes in arithmetic progression, , Acta Arith. 13 (1967/68), 395–404. (1967) MR0225736
- Jeans J. A., The converse of Fermat’s theorem, , Messenger of Mathematics 27 (1898), p. 174.
- Keller W., Factors of Fermat numbers and large primes of the form , , Math. Comp., 41 (1983), 661–673. (1983) MR0717710
- Keller W., Prime factors of Fermat numbers Fm and complete factoring status of Fermat numbers as of October 5, , 2004 URL; http://www.prothsearch.net/fermat.html; Last modified: October 5, 2004.
- Kiss E., 10.1006/hmat.1998.2212, , Historia Math. 26 (1999), 68–76. (1999) Zbl0920.11001MR1677471DOI10.1006/hmat.1998.2212
- Knopfmacher J., Porubsky, Topologies Related to Arithmetical Properties of Integral Domains, , Expo. Math. 15 (1997), 131–148. (1997) Zbl0883.11043MR1458761
- Korselt A., Problème chinois, , L’Interm. des Math. 6 (1899), 142-143.
- Kraïtchik M., Théorie des Nombres, , Gauthier – Villars, Paris 1922. (1922)
- Kraïtchik M., On the factorization of , , Scripta Math. 18 (1952), 39–52. (1952)
- Křižek M., Luca F., Somer L., 17 Lectures on Fermat Numbers, , From Number Theory to Geometry, Canadian Mathematical Society, Springer 2001. MR1866957
- Lucas E., Sur la série récurrent de Fermat, , Bolletino di Bibliografia e di Storia della Scienze Matematiche e Fisiche 11 (1878), 783–798.
- Lucas E., Théorèmes d’arithmetique, , Atti della Reale Accademia delle scienze di Torino 13 (1878), 271–284.
- Malo E., Nombres qui, sans être premiers, vérifient exceptionellement une congruence de Fermat, L’Interm, . des Math. 10 (1903), 8. (1903)
- Mahnke D., Leibniz and der Suche nach einer allgemeinem Primzahlgleichung, , Bibliotheca Math. Vol. 13 (1913), 29–61. (1913)
- Needham J., Science and Civilization in China, vol. 3: Mathematics and Sciences of the Heavens and the Earth, , Cambridge 1959, p. 54, footnote A. (1959) MR0139507
- Pinch Richard G. E., The pseudoprimes up to , , Algorithmic Number Theory, 4th International Symposium, Proceedings ANTS-IV Leiden, The Netherlands, July 2000, Springer 2000, 456–473. MR1850626
- Pomerance C., A new lower bound for the pseudoprimes counting function, , Illinois J. Math. 26 (1982), 4–9. (1982) MR0638549
- Pomerance C., Selfridge J. L., Wagstaff S. S., The pseudoprimes to , , Math. Comp. 35 (1980), 1009–1026. (1980) MR0572872
- Ribenboim P., The New Book of Prime Number Records, , Springer, New York, 1996. (1996) Zbl0856.11001MR1377060
- Riesel H., Prime Numbers and Computer Methods for Factorization, , Birkhäuser, Boston-Basel-Berlin, 1994. (1994) Zbl0821.11001MR1292250
- Rotkiewicz A., 10.1007/BF02843874, , Rend. Circ. Mat. Palermo (2) 11 (1962), 280–282. (1962) Zbl0119.03902MR0166137DOI10.1007/BF02843874
- Rotkiewicz A., Sur les nombres pseudopremiers de la forme , , C.R. Acad. Sci. Paris 257 (1963), 2601–2604. (1963) Zbl0116.03501MR0162757
- Rotkiewicz A., Sierpiński W., Sur l’équation diophantienne , , Publ. Inst. Math. (Beograd) (N.S.) 4 (18) (1964), 135–137. (1964) MR0171745
- Rotkiewicz A., Schinzel A., Sur les nombres pseudopremiers de la forme , , ibidem 258 (1964), 3617–3620. (1964) MR0161828
- Rotkiewicz A., Sur les formules donnant des nombres pseudopremiers, , Colloq. Math. 12 (1964), 69–72. (1964) Zbl0129.02703MR0166138
- Rotkiewicz A., Pseudoprime Numbers and Their Generalizations, , Stud. Assoc. Fac. Sci. Univ. Novi Sad, 1972, pp. i+169. (1972) Zbl0324.10007MR0330034
- Rotkiewicz A., 10.1007/BF02849586, , Rend. Circ. Mat. Palermo (2) 28 (1979), 62–64. (1979) Zbl0425.10009MR0564551DOI10.1007/BF02849586
- Rotkiewicz A., van der Poorten A. I., 10.1017/S1446788700021315, , J. Austral. Math. Soc. Ser. A 29 (1980), 316–321. (1980) Zbl0428.10001MR0569519DOI10.1017/S1446788700021315
- Sarrus F., Démonstration de la fausseté du théorème énoncé à la page 320 du volume de ce recueil, , Annales de Math. Pure Appl. 10 (1819–20), 184–187. MR1556023
- Schinzel A., On primitive prime factors of , , Proc. Cambridge Philos. Soc. 58(1962), 555-562. (1962) MR0143728
- Sierpiński W., Remarque sur une hypothèse des Chinois concernant les nombres , , Colloq. Math. 1 (1948), 9. (1948) MR0023256
- Sierpiński W., A selection of Problems in the Theory of Numbers, , Pergamon Press. New York, 1964. (1964) MR0170843
- Sierpiński W., Elementary Theory of numbers, , Engl. ed. revised and enlargend by A. Schinzel, Państwowe Wydawnictwo Naukowe, Warszawa, 1988. (1988) MR0930670
- Steuerwald R., Über die Kongruenz , , S.-B. Math.-Nat. Kl., Bayer. Akad. Win., 1947, 177. (1947) MR0030541
- Stevenhagen P., 10.1016/1385-7258(87)90009-6, , Nederl. Akad. Wetensch. Indag. Math. 49 (1987), 451–468. (1987) Zbl0635.10010MR0922449DOI10.1016/1385-7258(87)90009-6
- Szymiczek K., Note on Fermat numbers, , Elem. Math. 21 (1966), 598. (1966) Zbl0142.28904MR0193056
- Williams Hugh C., Edouard Lucas and Primality Testing, , Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 22 A Wiley - Interscience Publication, New York-Chichester-Weinheim-Brisbane-Singapore-Toronto 1998. (1998) Zbl1155.11363MR1632793
- Zsigmondy K., 10.1007/BF01692444, , Monastsh. Math. 3 (1892), 265–284. MR1546236DOI10.1007/BF01692444
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.