Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Factor tables 1657–1817, with notes on the birth of number theory

Maarten Bullynck (2010)

Revue d'histoire des mathématiques

The history of the construction, organisation and publication of factor tables from 1657 to 1817, in itself a fascinating story, also touches upon many topics of general interest for the history of mathematics. The considerable labour involved in constructing and correcting these tables has pushed mathematicians and calculators to organise themselves in networks. Around 1660 J. Pell was the first to motivate others to calculate a large factor table, for which he saw many applications, from Diophantine...

La primalité en temps polynomial

François Morain (2002/2003)

Séminaire Bourbaki

Le problème de la primalité est l’un des problèmes les plus simples et les plus anciens de la théorie des nombres. À la fin des années 1970, Adleman, Pomerance et Rumely ont donné le premier algorithme de primalité déterministe, dont le temps de calcul était presque polynomial. Il a fallu 20 années supplémentaires pour qu’Agrawal, Kayal et Saxena donnent un algorithme déterministe de temps de calcul polynomial. L’exposé présentera ces travaux, et il fera également le point sur les différents autres...

On pseudoprimes having special forms and a solution of K. Szymiczek’s problem

Andrzej Rotkiewicz (2005)

Acta Mathematica Universitatis Ostraviensis

We use the properties of p -adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.

On some subgroups of the multiplicative group of finite rings

José Felipe Voloch (2004)

Journal de Théorie des Nombres de Bordeaux

Let S be a subset of F q , the field of q elements and h F q [ x ] a polynomial of degree d > 1 with no roots in S . Consider the group generated by the image of { x - s s S } in the group of units of the ring F q [ x ] / ( h ) . In this paper we present a number of lower bounds for the size of this group. Our main motivation is an application to the recent polynomial time primality testing algorithm [AKS]. The bounds have also applications to graph theory and to the bounding of the number of rational points on abelian covers of the projective...

Primality test for numbers of the form ( 2 p ) 2 n + 1

Yingpu Deng, Dandan Huang (2015)

Acta Arithmetica

We describe a primality test for M = ( 2 p ) 2 n + 1 with an odd prime p and a positive integer n, which are a particular type of generalized Fermat numbers. We also present special primality criteria for all odd prime numbers p not exceeding 19. All these primality tests run in deterministic polynomial time in the input size log₂M. A special 2pth power reciprocity law is used to deduce our result.

Primitive Lucas d-pseudoprimes and Carmichael-Lucas numbers

Walter Carlip, Lawrence Somer (2007)

Colloquium Mathematicae

Let d be a fixed positive integer. A Lucas d-pseudoprime is a Lucas pseudoprime N for which there exists a Lucas sequence U(P,Q) such that the rank of appearance of N in U(P,Q) is exactly (N-ε(N))/d, where the signature ε(N) = (D/N) is given by the Jacobi symbol with respect to the discriminant D of U. A Lucas d-pseudoprime N is a primitive Lucas d-pseudoprime if (N-ε(N))/d is the maximal rank of N among Lucas sequences U(P,Q) that exhibit N as a Lucas pseudoprime. We derive...

Currently displaying 1 – 20 of 22

Page 1 Next