Remarks on several types of convergence of bounded sequences

Vladimír Baláž; Oto Strauch; Tibor Šalát

Acta Mathematica Universitatis Ostraviensis (2006)

  • Volume: 14, Issue: 1, page 3-12
  • ISSN: 1804-1388

Abstract

top
In this paper we analyze relations among several types of convergences of bounded sequences, in particulars among statistical convergence, u -convergence, ϕ -convergence, almost convergence, strong p -Cesàro convergence and uniformly strong p -Cesàro convergence.

How to cite

top

Baláž, Vladimír, Strauch, Oto, and Šalát, Tibor. "Remarks on several types of convergence of bounded sequences." Acta Mathematica Universitatis Ostraviensis 14.1 (2006): 3-12. <http://eudml.org/doc/35155>.

@article{Baláž2006,
abstract = {In this paper we analyze relations among several types of convergences of bounded sequences, in particulars among statistical convergence, $\{\mathcal \{I\}\}_u$-convergence, $\varphi $-convergence, almost convergence, strong $p$-Cesàro convergence and uniformly strong $p$-Cesàro convergence.},
author = {Baláž, Vladimír, Strauch, Oto, Šalát, Tibor},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {sequence; statistical convergence; $\{\mathcal \{I\}\}$-convergence; almost convergence; Cesàro convergence; uniform convergence; Euler function; prime number; $\varphi $-convergence; sequence; statistical convergence; -convergence; almost convergence; Cesàro convergence; uniform convergence; Euler function; prime number; -convergence},
language = {eng},
number = {1},
pages = {3-12},
publisher = {University of Ostrava},
title = {Remarks on several types of convergence of bounded sequences},
url = {http://eudml.org/doc/35155},
volume = {14},
year = {2006},
}

TY - JOUR
AU - Baláž, Vladimír
AU - Strauch, Oto
AU - Šalát, Tibor
TI - Remarks on several types of convergence of bounded sequences
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2006
PB - University of Ostrava
VL - 14
IS - 1
SP - 3
EP - 12
AB - In this paper we analyze relations among several types of convergences of bounded sequences, in particulars among statistical convergence, ${\mathcal {I}}_u$-convergence, $\varphi $-convergence, almost convergence, strong $p$-Cesàro convergence and uniformly strong $p$-Cesàro convergence.
LA - eng
KW - sequence; statistical convergence; ${\mathcal {I}}$-convergence; almost convergence; Cesàro convergence; uniform convergence; Euler function; prime number; $\varphi $-convergence; sequence; statistical convergence; -convergence; almost convergence; Cesàro convergence; uniform convergence; Euler function; prime number; -convergence
UR - http://eudml.org/doc/35155
ER -

References

top
  1. Uniform density u and corresponding I u -convergence,, Math. Communication 11 (2006), 1–7. (2006) 
  2. Arithmetic progressions in lacunary sets, Mountain J. Math. 17 (1987), 587–596. (1987) MR0908265
  3. The uniform density of sets of integers and Fermat’s Last Theorem, C. R. Math. Ref. Acad. Sci. Canada XII (1990), 1–6.. (1990) MR1043085
  4. Éléments De Mathématique Topologie Générale Livre III, Russian translation: Obščaja topologija Osnovnye struktury, Nauka, Moskva, 1968. (1968) 
  5. The statistical and strong p -Cesàro convergence of sequences, Analysis 8 (1988), 47–63. (1988) Zbl0653.40001MR0954458
  6. Two valued measures and summability,, Analysis 10 (1990), 1–6. (1990) Zbl0726.40009MR1085803
  7. Solution of advanced problems: ϕ -convergence, Amer. Math. Monthly 85 (1978), 122-123. (1978) 
  8. Sur la convergence statistique, Coll. Math. 2 (1951), 241–244. (1951) Zbl0044.33605MR0048548
  9. On statistical convergence, Analysis 5 (1985), 301-313. (1985) Zbl0588.40001MR0816582
  10. Functions of finite Baire type, Amer. Math. Monthly 67 (1960), 164-165. (1960) Zbl0093.06104MR0118788
  11. Selected Parts of Mathematical Analysis, PWN, Warszawa, 1970. (Polish) (1970) MR0514704
  12. -convergence, Real. Anal. Exchange 26 (2000–2001), 669-686. (2000–2001) MR1844385
  13. -convergence and extremal -limit points, Math. Slovaca 55 (2005), no. 4,, 443-464. (2005) MR2181783
  14. On ϕ -convergence and ϕ -density, Math. Slovaca 55 (2005), no. 3, 139-150. (2005) Zbl1113.40002MR2181010
  15. Uniform Distribution of Sequences, John Wiley & Sons, New York, 1974. (1974) MR0419394
  16. A contribution to theory of divergent sequences, Acta Math. 80 (1948), 167-190. (1948) MR0027868
  17. A new type of convergence, Math. Proc. Cambridge Phil. Soc. 83 (1978), 61-64. (1978) Zbl0392.40001MR0493034
  18. Steinhaus type theorems for sumability matrices, Proc. Amer. Math Soc. 45 (1974), 209-213. (1974) MR0364938
  19. On almost convergent and statistically convergent subsequences, Acta Math. Hung. 43 (2001), 135-151. (2001) MR1924673
  20. Regular Matrix Transformations, Mc-Graw Hill Publ. Comp., London-New York-Toronto-Sydney, 1966. (1966) Zbl0159.35401MR0225045
  21. The integrability of certain functions and related sumability methods, Amer. Math. Monthly 66 (1959), 361–375. (1959) MR0104946
  22. Distribution of Sequences: A Sampler, Schriftenreihe der Slowakischen Akademie der Wissenschaften, Band 1, Peter Lang, Frankfurt am Main, 2005. (2005) MR2290224
  23. On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150. (1980) MR0587239
  24. Real Functions,  , Springer-Verlag  , Berlin-Göttingen-Heidelberg-New York-Tokyo, 1985. (1985) Zbl0581.26001MR0818744
  25. Porosity and σ -porosity, Real. Anal. Exchange 13 (1987–88), 314-350. (1987–88) MR0943561
  26. Almost everywhere convergence and recurrence along subsequences in ergodic theory, Ph.D. Thesis, The Ohio State University. 
  27. Hartman sets, functions and sequences - a survey, Advanced Studies in Pure Mathematics 43 (2006), 1–27. (2006) MR2405618

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.