Natural homomorphisms of Witt rings of orders in algebraic number fields. II
Acta Mathematica Universitatis Ostraviensis (2006)
- Volume: 14, Issue: 1, page 13-16
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topCiemała, Marzena. "Natural homomorphisms of Witt rings of orders in algebraic number fields. II." Acta Mathematica Universitatis Ostraviensis 14.1 (2006): 13-16. <http://eudml.org/doc/35156>.
@article{Ciemała2006,
abstract = {We prove that there are infinitely many real quadratic number fields $K$ with the property that for infinitely many orders $\mathcal \{O\}$ in $K$ and for the maximal order $R$ in $K$ the natural homomorphism $\varphi :W\mathcal \{O\}\rightarrow WR$ of Witt rings is surjective.},
author = {Ciemała, Marzena},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {Witt ring; orders in number fields; bilinear forms on ideals},
language = {eng},
number = {1},
pages = {13-16},
publisher = {University of Ostrava},
title = {Natural homomorphisms of Witt rings of orders in algebraic number fields. II},
url = {http://eudml.org/doc/35156},
volume = {14},
year = {2006},
}
TY - JOUR
AU - Ciemała, Marzena
TI - Natural homomorphisms of Witt rings of orders in algebraic number fields. II
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2006
PB - University of Ostrava
VL - 14
IS - 1
SP - 13
EP - 16
AB - We prove that there are infinitely many real quadratic number fields $K$ with the property that for infinitely many orders $\mathcal {O}$ in $K$ and for the maximal order $R$ in $K$ the natural homomorphism $\varphi :W\mathcal {O}\rightarrow WR$ of Witt rings is surjective.
LA - eng
KW - Witt ring; orders in number fields; bilinear forms on ideals
UR - http://eudml.org/doc/35156
ER -
References
top- Ciemała M., Natural homomorphisms of Witt rings of orders in algebraic number fields, . Math. Slovaca 54 (2004), 473–477. MR2114618
- Ciemała M., Szymiczek K., 10.1090/S0002-9939-05-07896-2, . Proc. Amer. Math. Soc. 133 (2005), 2519–2523. MR2146193DOI10.1090/S0002-9939-05-07896-2
- Ciemała M., Szymiczek K., On injectivity of natural homomorphisms of Witt rings (submitted), .
- Czogała A., Generators of the Witt groups of algebraic integers, . Ann. Math. Siles. 12 (1998), 105–121. (1998) MR1673080
- Milnor J., Husemoller D., Symmetric bilinear forms, . Springer-Verlag, Berlin - Heidelberg - New York 1973. (1973) Zbl0292.10016MR0506372
- Neukirch J., Algebraic number theory, . Springer-Verlag, Berlin 1999. (1999) Zbl0956.11021MR1697859
- Sierpiński W., Teoria Liczb, . Monografie Matematyczne, Warszawa 1950. (1950) MR0047060
- Ward M., 10.1215/S0012-7094-54-02163-8, . Duke Math. J. 21 (1954), 607–614). (1954) Zbl0058.03701MR0064073DOI10.1215/S0012-7094-54-02163-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.