Range of density measures

Martin Sleziak; Miloš Ziman

Acta Mathematica Universitatis Ostraviensis (2009)

  • Volume: 17, Issue: 1, page 33-50
  • ISSN: 1804-1388

Abstract

top
We investigate some properties of density measures – finitely additive measures on the set of natural numbers extending asymptotic density. We introduce a class of density measures, which is defined using cluster points of the sequence A ( n ) n as well as cluster points of some other similar sequences. We obtain range of possible values of density measures for any subset of . Our description of this range simplifies the description of Bhashkara Rao and Bhashkara Rao [Bhaskara Rao, K. P. S., Bhaskara Rao, M., Theory of Charges – A Study of Finitely Additive Measures, Academic Press, London–New York, 1983.] for general finitely additive measures. Also the values which can be attained by the measures defined in the first part of the paper are studied.

How to cite

top

Sleziak, Martin, and Ziman, Miloš. "Range of density measures." Acta Mathematica Universitatis Ostraviensis 17.1 (2009): 33-50. <http://eudml.org/doc/35196>.

@article{Sleziak2009,
abstract = {We investigate some properties of density measures – finitely additive measures on the set of natural numbers $\text\{$\mathbb \{N\}$\}$ extending asymptotic density. We introduce a class of density measures, which is defined using cluster points of the sequence $\bigl (\frac\{A(n)\}\{n\}\bigr )$ as well as cluster points of some other similar sequences. We obtain range of possible values of density measures for any subset of $\text\{$\mathbb \{N\}$\}$. Our description of this range simplifies the description of Bhashkara Rao and Bhashkara Rao [Bhaskara Rao, K. P. S., Bhaskara Rao, M., Theory of Charges – A Study of Finitely Additive Measures, Academic Press, London–New York, 1983.] for general finitely additive measures. Also the values which can be attained by the measures defined in the first part of the paper are studied.},
author = {Sleziak, Martin, Ziman, Miloš},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {asymptotic density; density measure; finitely additive measure; asymptotic density; density measure; finitely additive measure},
language = {eng},
number = {1},
pages = {33-50},
publisher = {University of Ostrava},
title = {Range of density measures},
url = {http://eudml.org/doc/35196},
volume = {17},
year = {2009},
}

TY - JOUR
AU - Sleziak, Martin
AU - Ziman, Miloš
TI - Range of density measures
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2009
PB - University of Ostrava
VL - 17
IS - 1
SP - 33
EP - 50
AB - We investigate some properties of density measures – finitely additive measures on the set of natural numbers $\text{$\mathbb {N}$}$ extending asymptotic density. We introduce a class of density measures, which is defined using cluster points of the sequence $\bigl (\frac{A(n)}{n}\bigr )$ as well as cluster points of some other similar sequences. We obtain range of possible values of density measures for any subset of $\text{$\mathbb {N}$}$. Our description of this range simplifies the description of Bhashkara Rao and Bhashkara Rao [Bhaskara Rao, K. P. S., Bhaskara Rao, M., Theory of Charges – A Study of Finitely Additive Measures, Academic Press, London–New York, 1983.] for general finitely additive measures. Also the values which can be attained by the measures defined in the first part of the paper are studied.
LA - eng
KW - asymptotic density; density measure; finitely additive measure; asymptotic density; density measure; finitely additive measure
UR - http://eudml.org/doc/35196
ER -

References

top
  1. Ašić, M. D., Adamović, D. D., 10.2307/2316738, Amer. Math. Monthly 77 (1970) 613–616 (1970) MR0264599DOI10.2307/2316738
  2. Balcar, B., Štěpánek, P., Teorie množin, Academia, Praha, 1986 (in Czech) (1986) MR0911270
  3. Banach, S., Theory of Linear Operations, North Holland, Amsterdam, 1987 (1987) Zbl0613.46001MR0880204
  4. Bhaskara Rao, K. P. S., Bhaskara Rao, M., Theory of Charges – A Study of Finitely Additive Measures, Academic Press, London–New York, 1983 (1983) Zbl0516.28001MR0751777
  5. Blass, A., Frankiewicz, R., Plebanek, G., Ryll-Nardzewski, C., 10.1090/S0002-9939-01-05941-X, Proc. Amer. Math. Soc. 129 (11) (2001) 3313–3320 (2001) Zbl0992.28002MR1845008DOI10.1090/S0002-9939-01-05941-X
  6. Blümlinger, M., 10.1090/S0002-9947-96-01779-5, Trans. Amer. Math. Soc. 348 (12) (1996) 5087–5111 (1996) MR1390970DOI10.1090/S0002-9947-96-01779-5
  7. Buck, R. C., 10.2307/2371785, Amer. J. Math. 68 (1946) 560–580 (1946) Zbl0061.07503MR0018196DOI10.2307/2371785
  8. Campbell, D. E., Kelly, J. S., 10.1016/0165-4896(94)00772-Z, Math. Social Sci. 29 (1995) 181–194 (1995) Zbl0886.90008MR1332695DOI10.1016/0165-4896(94)00772-Z
  9. Fey, M., May’s theorem with an infinite population, Social Choice and Welfare 23 (2004) 275–293 (2004) Zbl1090.91020MR2084902
  10. Fey, M., Problems (Density measures), Tatra Mnt. Math. Publ. 31 (2005) 177–181 (2005) MR2208785
  11. Fuchs, A., Giuliano Antonini, R., Théorie générale des densités, Rend. Acc. Naz. delle Scienze detta dei XL, Mem. di Mat. 108 (1990) Vol. XI, fasc. 14, 253–294 (1990) Zbl0726.60004MR1106580
  12. Gillman, L., Jerison, M., Rings of Continuous Functions, Van Nostrand, Princeton, 1960 (1960) Zbl0093.30001MR0116199
  13. Giuliano Antonini, R., Grekos, G., Mišík, L., 10.1007/s10587-007-0087-z, Czechosl. Math. J. 57 (3) (2007) 947–962 (2007) Zbl1195.11018MR2356932DOI10.1007/s10587-007-0087-z
  14. Grekos, G., On various definitions of density, (survey), Tatra Mt. Math. Publ. 31 (2005) 17–27 (2005) Zbl1150.11339MR2208784
  15. Grekos, G., Šalát, T., Tomanová, J., Gaps and densities, Bull. Math. Soc. Sci. Math. Roum. 46 (3–4) (2003–2004) 121–141 (2004) MR2094181
  16. Grekos, G., Volkmann, B., On densities and gaps, J. Number Theory 26 (1987) 129–148 (1987) Zbl0622.10044MR0889380
  17. Halberstam, H., Roth, K. F., Sequences, Springer-Verlag, New York, 1983 (1983) Zbl0498.10001MR0687978
  18. Howard, P., Rubin, J. E., Consequences of the axiom of choice, Mathematical Surveys and Monographs. 59. Providence, RI: American Mathematical Society (AMS), 1998 (1998) Zbl0947.03001MR1637107
  19. Hrbacek, K., Jech, T., Introduction to set theory, Marcel Dekker, New York, 1999 (1999) Zbl1045.03521MR1697766
  20. Johnson, B. E., 10.1090/S0002-9939-1969-0236345-0, Proc. Amer. Math. Soc. 20 (2) (1969) 420–422 (1969) Zbl0181.14502MR0236345DOI10.1090/S0002-9939-1969-0236345-0
  21. Lauwers, L., 10.1016/S0165-4896(97)00022-X, Mathematical Social Sciences 35 (1998) 37–55 (1998) Zbl0926.91015MR1609016DOI10.1016/S0165-4896(97)00022-X
  22. Maharam, D., Finitely additive measures on the integers, Sankhya, Ser. A 38 (1976) 44–59 (1976) Zbl0383.60008MR0473132
  23. Pincus, D., Solovay, R. M., 10.2307/2272118, The Journal of Symbolic Logic 42 (2) (1977) 179–190 (1977) Zbl0384.03030MR0480028DOI10.2307/2272118
  24. Pólya, G., 10.1007/BF01180553, Math. Zeit. 29 (1929) 549–640 (1929) DOI10.1007/BF01180553
  25. Rajagopal, C. T., 10.2307/2371942, Amer. J. Math. 70 (1) (1948) 157–166 (1948) Zbl0041.18301MR0023930DOI10.2307/2371942
  26. Šalát, T., Tijdeman, R., Asymptotic densities of sets of positive integers, Mathematica Slovaca 33 (1983) 199–207 (1983) MR0699090
  27. Sleziak, M., Ziman, M., Lévy group and density measures, J. Number Theory, 128 (12) (2008) 3005–3012 (2008) Zbl1216.11010MR2464850
  28. Tenenbaum, G., Introduction to analytic and probabilistic number theory, Cambridge Univ. Press, Cambridge, 1995 (1995) Zbl0880.11001MR1342300
  29. Toma, V., Densities and social choice trade-offs, Tatra Mt. Math. Publ. 31 (2005) 55–63 (2005) Zbl1150.91333MR2208787
  30. van Douwen, E. K., Finitely additive measures on , Topology and its Applications 47 (1992) 223–268 (1992) MR1192311
  31. Walker, R. C., The Stone-Čech compactification, Springer-Verlag, Berlin, Heidelberg, New York, 1974 (1974) Zbl0292.54001MR0380698

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.