Range of density measures
Acta Mathematica Universitatis Ostraviensis (2009)
- Volume: 17, Issue: 1, page 33-50
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topSleziak, Martin, and Ziman, Miloš. "Range of density measures." Acta Mathematica Universitatis Ostraviensis 17.1 (2009): 33-50. <http://eudml.org/doc/35196>.
@article{Sleziak2009,
abstract = {We investigate some properties of density measures – finitely additive measures on the set of natural numbers $\text\{$\mathbb \{N\}$\}$ extending asymptotic density. We introduce a class of density measures, which is defined using cluster points of the sequence $\bigl (\frac\{A(n)\}\{n\}\bigr )$ as well as cluster points of some other similar sequences. We obtain range of possible values of density measures for any subset of $\text\{$\mathbb \{N\}$\}$. Our description of this range simplifies the description of Bhashkara Rao and Bhashkara Rao [Bhaskara Rao, K. P. S., Bhaskara Rao, M., Theory of Charges – A Study of Finitely Additive Measures, Academic Press, London–New York, 1983.] for general finitely additive measures. Also the values which can be attained by the measures defined in the first part of the paper are studied.},
author = {Sleziak, Martin, Ziman, Miloš},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {asymptotic density; density measure; finitely additive measure; asymptotic density; density measure; finitely additive measure},
language = {eng},
number = {1},
pages = {33-50},
publisher = {University of Ostrava},
title = {Range of density measures},
url = {http://eudml.org/doc/35196},
volume = {17},
year = {2009},
}
TY - JOUR
AU - Sleziak, Martin
AU - Ziman, Miloš
TI - Range of density measures
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2009
PB - University of Ostrava
VL - 17
IS - 1
SP - 33
EP - 50
AB - We investigate some properties of density measures – finitely additive measures on the set of natural numbers $\text{$\mathbb {N}$}$ extending asymptotic density. We introduce a class of density measures, which is defined using cluster points of the sequence $\bigl (\frac{A(n)}{n}\bigr )$ as well as cluster points of some other similar sequences. We obtain range of possible values of density measures for any subset of $\text{$\mathbb {N}$}$. Our description of this range simplifies the description of Bhashkara Rao and Bhashkara Rao [Bhaskara Rao, K. P. S., Bhaskara Rao, M., Theory of Charges – A Study of Finitely Additive Measures, Academic Press, London–New York, 1983.] for general finitely additive measures. Also the values which can be attained by the measures defined in the first part of the paper are studied.
LA - eng
KW - asymptotic density; density measure; finitely additive measure; asymptotic density; density measure; finitely additive measure
UR - http://eudml.org/doc/35196
ER -
References
top- Ašić, M. D., Adamović, D. D., 10.2307/2316738, Amer. Math. Monthly 77 (1970) 613–616 (1970) MR0264599DOI10.2307/2316738
- Balcar, B., Štěpánek, P., Teorie množin, Academia, Praha, 1986 (in Czech) (1986) MR0911270
- Banach, S., Theory of Linear Operations, North Holland, Amsterdam, 1987 (1987) Zbl0613.46001MR0880204
- Bhaskara Rao, K. P. S., Bhaskara Rao, M., Theory of Charges – A Study of Finitely Additive Measures, Academic Press, London–New York, 1983 (1983) Zbl0516.28001MR0751777
- Blass, A., Frankiewicz, R., Plebanek, G., Ryll-Nardzewski, C., 10.1090/S0002-9939-01-05941-X, Proc. Amer. Math. Soc. 129 (11) (2001) 3313–3320 (2001) Zbl0992.28002MR1845008DOI10.1090/S0002-9939-01-05941-X
- Blümlinger, M., 10.1090/S0002-9947-96-01779-5, Trans. Amer. Math. Soc. 348 (12) (1996) 5087–5111 (1996) MR1390970DOI10.1090/S0002-9947-96-01779-5
- Buck, R. C., 10.2307/2371785, Amer. J. Math. 68 (1946) 560–580 (1946) Zbl0061.07503MR0018196DOI10.2307/2371785
- Campbell, D. E., Kelly, J. S., 10.1016/0165-4896(94)00772-Z, Math. Social Sci. 29 (1995) 181–194 (1995) Zbl0886.90008MR1332695DOI10.1016/0165-4896(94)00772-Z
- Fey, M., May’s theorem with an infinite population, Social Choice and Welfare 23 (2004) 275–293 (2004) Zbl1090.91020MR2084902
- Fey, M., Problems (Density measures), Tatra Mnt. Math. Publ. 31 (2005) 177–181 (2005) MR2208785
- Fuchs, A., Giuliano Antonini, R., Théorie générale des densités, Rend. Acc. Naz. delle Scienze detta dei XL, Mem. di Mat. 108 (1990) Vol. XI, fasc. 14, 253–294 (1990) Zbl0726.60004MR1106580
- Gillman, L., Jerison, M., Rings of Continuous Functions, Van Nostrand, Princeton, 1960 (1960) Zbl0093.30001MR0116199
- Giuliano Antonini, R., Grekos, G., Mišík, L., 10.1007/s10587-007-0087-z, Czechosl. Math. J. 57 (3) (2007) 947–962 (2007) Zbl1195.11018MR2356932DOI10.1007/s10587-007-0087-z
- Grekos, G., On various definitions of density, (survey), Tatra Mt. Math. Publ. 31 (2005) 17–27 (2005) Zbl1150.11339MR2208784
- Grekos, G., Šalát, T., Tomanová, J., Gaps and densities, Bull. Math. Soc. Sci. Math. Roum. 46 (3–4) (2003–2004) 121–141 (2004) MR2094181
- Grekos, G., Volkmann, B., On densities and gaps, J. Number Theory 26 (1987) 129–148 (1987) Zbl0622.10044MR0889380
- Halberstam, H., Roth, K. F., Sequences, Springer-Verlag, New York, 1983 (1983) Zbl0498.10001MR0687978
- Howard, P., Rubin, J. E., Consequences of the axiom of choice, Mathematical Surveys and Monographs. 59. Providence, RI: American Mathematical Society (AMS), 1998 (1998) Zbl0947.03001MR1637107
- Hrbacek, K., Jech, T., Introduction to set theory, Marcel Dekker, New York, 1999 (1999) Zbl1045.03521MR1697766
- Johnson, B. E., 10.1090/S0002-9939-1969-0236345-0, Proc. Amer. Math. Soc. 20 (2) (1969) 420–422 (1969) Zbl0181.14502MR0236345DOI10.1090/S0002-9939-1969-0236345-0
- Lauwers, L., 10.1016/S0165-4896(97)00022-X, Mathematical Social Sciences 35 (1998) 37–55 (1998) Zbl0926.91015MR1609016DOI10.1016/S0165-4896(97)00022-X
- Maharam, D., Finitely additive measures on the integers, Sankhya, Ser. A 38 (1976) 44–59 (1976) Zbl0383.60008MR0473132
- Pincus, D., Solovay, R. M., 10.2307/2272118, The Journal of Symbolic Logic 42 (2) (1977) 179–190 (1977) Zbl0384.03030MR0480028DOI10.2307/2272118
- Pólya, G., 10.1007/BF01180553, Math. Zeit. 29 (1929) 549–640 (1929) DOI10.1007/BF01180553
- Rajagopal, C. T., 10.2307/2371942, Amer. J. Math. 70 (1) (1948) 157–166 (1948) Zbl0041.18301MR0023930DOI10.2307/2371942
- Šalát, T., Tijdeman, R., Asymptotic densities of sets of positive integers, Mathematica Slovaca 33 (1983) 199–207 (1983) MR0699090
- Sleziak, M., Ziman, M., Lévy group and density measures, J. Number Theory, 128 (12) (2008) 3005–3012 (2008) Zbl1216.11010MR2464850
- Tenenbaum, G., Introduction to analytic and probabilistic number theory, Cambridge Univ. Press, Cambridge, 1995 (1995) Zbl0880.11001MR1342300
- Toma, V., Densities and social choice trade-offs, Tatra Mt. Math. Publ. 31 (2005) 55–63 (2005) Zbl1150.91333MR2208787
- van Douwen, E. K., Finitely additive measures on , Topology and its Applications 47 (1992) 223–268 (1992) MR1192311
- Walker, R. C., The Stone-Čech compactification, Springer-Verlag, Berlin, Heidelberg, New York, 1974 (1974) Zbl0292.54001MR0380698
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.