Karel Löwner and the Löwner ellipsoid

Ivan Netuka

Pokroky matematiky, fyziky a astronomie (1993)

  • Volume: 38, Issue: 4, page 212-218
  • ISSN: 0032-2423

How to cite

top

Netuka, Ivan. "Karel Löwner a Loewnerův elipsoid." Pokroky matematiky, fyziky a astronomie 38.4 (1993): 212-218. <http://eudml.org/doc/36434>.

@article{Netuka1993,
author = {Netuka, Ivan},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Minkowski volume},
language = {cze},
number = {4},
pages = {212-218},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Karel Löwner a Loewnerův elipsoid},
url = {http://eudml.org/doc/36434},
volume = {38},
year = {1993},
}

TY - JOUR
AU - Netuka, Ivan
TI - Karel Löwner a Loewnerův elipsoid
JO - Pokroky matematiky, fyziky a astronomie
PY - 1993
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 38
IS - 4
SP - 212
EP - 218
LA - cze
KW - Minkowski volume
UR - http://eudml.org/doc/36434
ER -

References

top
  1. Albers, D. J., Reid, C., An interview with Lipman Bers, The College Mathematics Journal 18 (1987), 266–290. (1987) Zbl0995.01518MR0931658
  2. Behrend, F., Über einige Affininvarianten konvexer Bereiche, Math. Ann. 113 (1937), 713–747. (1937) MR1513119
  3. Behrend, F., Über die kleinste umbeschriebene und die größte einbeschriebene Ellipse eines konvexen Bereichs, Math. Ann. 115 (1938), 397–411. (1938) Zbl0018.17502
  4. Berger, M., Convexity, Amer. Math. Monthly 97 (1990), 650–678. (1990) Zbl0713.52001MR1072810
  5. Busemann, H., The foundations of Minkowskian geometry, Comment. Math. Helvetici 24 (1950), 156–186. (1950) Zbl0040.37502MR0039296
  6. Busemann, H., The geometry of geodesics, Academic Press INC., New York, 1955. (1955) Zbl0112.37002MR0075623
  7. Loewner, Charles, Collected Papers, Ed. L. Bers, Birkhäuser, Boston, 1988. (1988) Zbl0642.01020MR1102243
  8. Danzer, L., Laugwitz, D., Lenz, H., Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden, Arch. Math. 8 (1957), 214–219. (1957) Zbl0078.35803MR0094771
  9. Dictionary of Scientific Biography (heslo: Loewner, Charles), Charles Scribner’s Sons, New York, 1973. (1973) 
  10. Editorial, J. d’Analyse (Jerusalem) 14 (1965), xvi–xvii. Zbl1198.83002
  11. Fuka, J., O Bieberbachově hypothese, Informace MVS JČSMF č. 27 (1986), 8–20, č. 28 (1986), 5–14. (1986) 
  12. Gruber, P. M., Minimal ellipsoids and their duals, Rend. Circ. Mat. Palermo, Ser. II, 37 (1988), 35–64. (1988) Zbl0673.52002MR0994137
  13. Heil, E., Martini, H., Special convex bodies, Preprint — Nr. 1395, Technische Hochschule Darmstadt, 1991. (1395) Zbl0794.52002MR1242985
  14. John, F., Osobní korespondence, . 
  15. Juhnke, F., Loewner ellipsoids via semiinfinite optimization and (quasi-) convexity theory, Preprint Math 4/90, Technische Universität, Magdeburg, 1990. (1990) 
  16. Leichtweiß, K., Konvexe Mengen, Springer-Verlag, Berlin, 1980. (1980) MR0586235
  17. Pinl, M., Kollegen in einer dunklen Zeit, Schluß, Jber. Deutsch. Math. Verein. 75 (1974), 166–208. (1974) Zbl0281.01013MR0476359
  18. Poggendorff, J., Biographisch-Literarisches Handwörterbuch der exacten Naturwissenschaften, VIIb, Teil 5 (heslo: Loewner, Charles). Akademie-Verlag, Berlin, 1976. (1976) 
  19. Pommerenke, C., The Bieberbach conjecture, The Mathematical Intelligencer 7 (1985), 23–25, 32. (1985) Zbl0588.30001MR0784940
  20. Schiffer, M., Osobní korespondence 
  21. Schiffer, M., Finn, R., Karlin, S., Charles Loewner (nekrolog), Stanford University, 1968 (nepublikováno). (1968) 
  22. Zaguskin, V. L., Ob opisannych i vpisannych ellipsoidach extremalnovo objema, Uspehi Mat. Nauk 13 (1958), vyp. 6, 89–93. (1958) MR0102054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.