ET and infinitary Church's thesis

Robert M. Baer

Pokroky matematiky, fyziky a astronomie (1996)

  • Volume: 41, Issue: 2, page 82-89
  • ISSN: 0032-2423

How to cite

top

Baer, Robert M.. "E. T. a infinitární Churchova teze." Pokroky matematiky, fyziky a astronomie 41.2 (1996): 82-89. <http://eudml.org/doc/37093>.

@article{Baer1996,
author = {Baer, Robert M.},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {extension of Church's thesis; infinite sequence of integers},
language = {cze},
number = {2},
pages = {82-89},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {E. T. a infinitární Churchova teze},
url = {http://eudml.org/doc/37093},
volume = {41},
year = {1996},
}

TY - JOUR
AU - Baer, Robert M.
TI - E. T. a infinitární Churchova teze
JO - Pokroky matematiky, fyziky a astronomie
PY - 1996
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 41
IS - 2
SP - 82
EP - 89
LA - cze
KW - extension of Church's thesis; infinite sequence of integers
UR - http://eudml.org/doc/37093
ER -

References

top
  1. Baer, R. M., Computability by normal algorithms, Proc. Am. Math. Soc. 20 (1969), 551–552. (1969) Zbl0176.27801MR0255401
  2. Davis, M., Computability & Unsolvability, New York: McGraw-Hill (1958). (1958) Zbl0080.00902MR0347574
  3. Davis, M., Why Gödel didn’t have Church’s Thesis, Inform. Control 54 (1982), 3–24. (1982) Zbl0519.03033MR0713305
  4. Deutsch, D., Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. Roy. Soc. London Ser. A 400 (1985), 97–117. (1985) Zbl0900.81019MR0801665
  5. Fischler, W., Morgan, D., Polchinski, J., Quantization of false-vacuum bubbles; a Hamiltonian treatement of gravitational tunneling, Phys. Rev. D 42 (1990), 4042–4055. (1990) MR1082899
  6. Gandy, R., The confluence of ideas in 1936, In The Universal Turing Machine: A Half-Century Survey (R. Herken, ed.), Hamburg: Kammerer & Unverzagt (1988). (1988) Zbl0689.01010MR1011468
  7. Goodman, N. D., Intensions, Church’s Thesis, and the formalization of mathematics, Notre Dame J. Formal Logic 28 (1987), 473–489. (1987) Zbl0656.03004MR0912643
  8. Kleene, S. C., Reflections on Church’s thesis, Notre Dame J. Formal Logic 28 (1987), 490–498. (1987) Zbl0649.03001MR0912644
  9. Kreisel, G., Church’s thesis and the ideal of formal rigour, Notre Dame J. Formal Logic 28 (1987), 499–519. (1987) Zbl0646.03001MR0912645
  10. Kreisel, G., Church’s Thesis: a kind of reducibility axiom for constructive mathematics, In Intuicionism and Proof Theory: Proceedings of the Summer Conference at Buffalo, N. Y. (A. Kino, J. Myhill, R. E. Vesley, eds.), Amsterdam: North-Holland (1970). (1970) Zbl0199.30001MR0278903
  11. Lopez-Escobar, E. G. K., Remarks on an infinitary language with constructive formulas, J. Symbol. Logic 32 (1967), 305–318. (1967) Zbl0221.02005MR0230608
  12. Lopez-Escobar, E. G. K., Infinite rules in finite systems, In Nonclassical Logics, Model Theory and Computability (A. I. Arruda, N. C. A da Costa, and R. Chuaqui, eds.), Amsterdam: North-Holland (1977). (1977) Zbl0386.03026MR0476477
  13. Rosen, R., Church’s Thesis and its relation to the concept of realizability in biology and physics, Bull. Math. Biophys. 24 (1962), 375–393. (1962) Zbl0118.34605
  14. Webb, J. C., Mechanism, Mentalism, and Metamathematics, Dordrecht: Reidel (1980). (1980) Zbl0454.03001MR0598635

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.