A new characterization of Mathieu groups

Changguo Shao; Qinhui Jiang

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 1, page 13-23
  • ISSN: 0044-8753

Abstract

top
Let G be a finite group and nse ( G ) the set of numbers of elements with the same order in G . In this paper, we prove that a finite group G is isomorphic to M , where M is one of the Mathieu groups, if and only if the following hold: (1)  | G | = | M | , (2)  nse ( G ) = nse ( M ) .

How to cite

top

Shao, Changguo, and Jiang, Qinhui. "A new characterization of Mathieu groups." Archivum Mathematicum 046.1 (2010): 13-23. <http://eudml.org/doc/37650>.

@article{Shao2010,
abstract = {Let $G$ be a finite group and $\operatorname\{nse\}(G)$ the set of numbers of elements with the same order in $G$. In this paper, we prove that a finite group $G$ is isomorphic to $M$, where $M$ is one of the Mathieu groups, if and only if the following hold: (1) $|G|=|M|$, (2) $\operatorname\{nse\}(G)=\operatorname\{nse\}(M)$.},
author = {Shao, Changguo, Jiang, Qinhui},
journal = {Archivum Mathematicum},
keywords = {finite group; solvable group; order of element; finite simple groups; Mathieu groups; numbers of elements; sets of element orders; orders of finite groups},
language = {eng},
number = {1},
pages = {13-23},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A new characterization of Mathieu groups},
url = {http://eudml.org/doc/37650},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Shao, Changguo
AU - Jiang, Qinhui
TI - A new characterization of Mathieu groups
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 1
SP - 13
EP - 23
AB - Let $G$ be a finite group and $\operatorname{nse}(G)$ the set of numbers of elements with the same order in $G$. In this paper, we prove that a finite group $G$ is isomorphic to $M$, where $M$ is one of the Mathieu groups, if and only if the following hold: (1) $|G|=|M|$, (2) $\operatorname{nse}(G)=\operatorname{nse}(M)$.
LA - eng
KW - finite group; solvable group; order of element; finite simple groups; Mathieu groups; numbers of elements; sets of element orders; orders of finite groups
UR - http://eudml.org/doc/37650
ER -

References

top
  1. Cao, Z. F., S ( 2 , 3 , 5 , 7 , 11 ) and simple K n -group, J. Heilongjiang Univ. Natur. Sci. 15 (2) (1998), 1–5, in Chinese. (1998) MR1671457
  2. Cao, Z. F., Diophantine equation and it’s application, Shanghai Jiaotong University Press, 2000, in Chinese. (2000) 
  3. Chillag, D., Herzog, M., 10.1016/0021-8693(90)90168-N, J. Algebra 131 (1) (1990), 110–125. (1990) Zbl0694.20015MR1055001DOI10.1016/0021-8693(90)90168-N
  4. Conway, J. H., Curtis, R. T., etc., S. P. Norton, Atlas of Finite Groups, Oxford, Clarendon Press, 1985. (1985) Zbl0568.20001MR0827219
  5. Cossey, J., Wang, Y., 10.1080/00927879908826701, Comm. Algebra 27 (9) (1999), 4347–4353. (1999) Zbl0948.20010MR1705872DOI10.1080/00927879908826701
  6. Hall, P., 10.1112/jlms/s1-3.2.98, J. London Math. Soc. 3 (2) (1928), 98–105. (1928) DOI10.1112/jlms/s1-3.2.98
  7. Herzog, M., 10.1016/0021-8693(68)90088-4, J. Algebra 120 (10) (1968), 383–388. (1968) MR0233881DOI10.1016/0021-8693(68)90088-4
  8. Ito, N., 10.1016/0021-8693(72)90057-9, J. Algebra 20 (1972), 226–249. (1972) Zbl0228.20004MR0289636DOI10.1016/0021-8693(72)90057-9
  9. Jafarzadeh, A., Iranmanesh, A., On simple K n -groups for n = 5 , 6 , London Math. Soc. Lecture Note Ser. (Campbell, C. M., Quick, M. R., Robertson, E. F., Smith, G. C., eds.), Cambridge University Press, 2007. (2007) Zbl1115.20009
  10. Kurzweil, H., Stellmacher, B., The Theory of Finite Groups, Springer-Verlag Berlin, 2004. (2004) Zbl1047.20011MR2014408
  11. Shi, W. J., A new characterization of the sporadic simple groups, Group Theory, Proc. of the 1987 Singapore Conf., Walter de Gruyter, Berlin, 1989, pp. 531–540. (1989) Zbl0657.20017MR0981868
  12. Shi, W. J., On simple K 4 -groups, Chinese Sci. Bull. 36 (17) (1991), 1281–1283, in Chinese. (1991) 
  13. Shi, W. J., The quantitative structure of groups and related topics, Math. Appl. (China Ser.) 365 (1996), 163–181, Kluwer Acad. Publ., Dordrecht. (1996) Zbl0872.20026MR1447204
  14. Shi, W. J., 10.1007/s11464-007-0008-3, Front. Math. China 2 (1) (2007), 123–125. (2007) Zbl1198.20016MR2289913DOI10.1007/s11464-007-0008-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.