A new characterization of Mathieu groups
Archivum Mathematicum (2010)
- Volume: 046, Issue: 1, page 13-23
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topShao, Changguo, and Jiang, Qinhui. "A new characterization of Mathieu groups." Archivum Mathematicum 046.1 (2010): 13-23. <http://eudml.org/doc/37650>.
@article{Shao2010,
abstract = {Let $G$ be a finite group and $\operatorname\{nse\}(G)$ the set of numbers of elements with the same order in $G$. In this paper, we prove that a finite group $G$ is isomorphic to $M$, where $M$ is one of the Mathieu groups, if and only if the following hold:
(1) $|G|=|M|$,
(2) $\operatorname\{nse\}(G)=\operatorname\{nse\}(M)$.},
author = {Shao, Changguo, Jiang, Qinhui},
journal = {Archivum Mathematicum},
keywords = {finite group; solvable group; order of element; finite simple groups; Mathieu groups; numbers of elements; sets of element orders; orders of finite groups},
language = {eng},
number = {1},
pages = {13-23},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A new characterization of Mathieu groups},
url = {http://eudml.org/doc/37650},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Shao, Changguo
AU - Jiang, Qinhui
TI - A new characterization of Mathieu groups
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 1
SP - 13
EP - 23
AB - Let $G$ be a finite group and $\operatorname{nse}(G)$ the set of numbers of elements with the same order in $G$. In this paper, we prove that a finite group $G$ is isomorphic to $M$, where $M$ is one of the Mathieu groups, if and only if the following hold:
(1) $|G|=|M|$,
(2) $\operatorname{nse}(G)=\operatorname{nse}(M)$.
LA - eng
KW - finite group; solvable group; order of element; finite simple groups; Mathieu groups; numbers of elements; sets of element orders; orders of finite groups
UR - http://eudml.org/doc/37650
ER -
References
top- Cao, Z. F., and simple -group, J. Heilongjiang Univ. Natur. Sci. 15 (2) (1998), 1–5, in Chinese. (1998) MR1671457
- Cao, Z. F., Diophantine equation and it’s application, Shanghai Jiaotong University Press, 2000, in Chinese. (2000)
- Chillag, D., Herzog, M., 10.1016/0021-8693(90)90168-N, J. Algebra 131 (1) (1990), 110–125. (1990) Zbl0694.20015MR1055001DOI10.1016/0021-8693(90)90168-N
- Conway, J. H., Curtis, R. T., etc., S. P. Norton, Atlas of Finite Groups, Oxford, Clarendon Press, 1985. (1985) Zbl0568.20001MR0827219
- Cossey, J., Wang, Y., 10.1080/00927879908826701, Comm. Algebra 27 (9) (1999), 4347–4353. (1999) Zbl0948.20010MR1705872DOI10.1080/00927879908826701
- Hall, P., 10.1112/jlms/s1-3.2.98, J. London Math. Soc. 3 (2) (1928), 98–105. (1928) DOI10.1112/jlms/s1-3.2.98
- Herzog, M., 10.1016/0021-8693(68)90088-4, J. Algebra 120 (10) (1968), 383–388. (1968) MR0233881DOI10.1016/0021-8693(68)90088-4
- Ito, N., 10.1016/0021-8693(72)90057-9, J. Algebra 20 (1972), 226–249. (1972) Zbl0228.20004MR0289636DOI10.1016/0021-8693(72)90057-9
- Jafarzadeh, A., Iranmanesh, A., On simple -groups for , London Math. Soc. Lecture Note Ser. (Campbell, C. M., Quick, M. R., Robertson, E. F., Smith, G. C., eds.), Cambridge University Press, 2007. (2007) Zbl1115.20009
- Kurzweil, H., Stellmacher, B., The Theory of Finite Groups, Springer-Verlag Berlin, 2004. (2004) Zbl1047.20011MR2014408
- Shi, W. J., A new characterization of the sporadic simple groups, Group Theory, Proc. of the 1987 Singapore Conf., Walter de Gruyter, Berlin, 1989, pp. 531–540. (1989) Zbl0657.20017MR0981868
- Shi, W. J., On simple -groups, Chinese Sci. Bull. 36 (17) (1991), 1281–1283, in Chinese. (1991)
- Shi, W. J., The quantitative structure of groups and related topics, Math. Appl. (China Ser.) 365 (1996), 163–181, Kluwer Acad. Publ., Dordrecht. (1996) Zbl0872.20026MR1447204
- Shi, W. J., 10.1007/s11464-007-0008-3, Front. Math. China 2 (1) (2007), 123–125. (2007) Zbl1198.20016MR2289913DOI10.1007/s11464-007-0008-3
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.