Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost

Roberto van der Putten

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 1, page 67-83
  • ISSN: 0010-2628

Abstract

top
In the setting of the optimal transportation problem we provide some conditions which ensure the existence and the uniqueness of the optimal map in the case of cost functions satisfying mild regularity hypothesis and no convexity or concavity assumptions.

How to cite

top

Putten, Roberto van der. "Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost." Commentationes Mathematicae Universitatis Carolinae 51.1 (2010): 67-83. <http://eudml.org/doc/37737>.

@article{Putten2010,
abstract = {In the setting of the optimal transportation problem we provide some conditions which ensure the existence and the uniqueness of the optimal map in the case of cost functions satisfying mild regularity hypothesis and no convexity or concavity assumptions.},
author = {Putten, Roberto van der},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {mass transport problem; measurable selections; degree theory; mass transport problem; measurable selection; degree theory},
language = {eng},
number = {1},
pages = {67-83},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost},
url = {http://eudml.org/doc/37737},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Putten, Roberto van der
TI - Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 1
SP - 67
EP - 83
AB - In the setting of the optimal transportation problem we provide some conditions which ensure the existence and the uniqueness of the optimal map in the case of cost functions satisfying mild regularity hypothesis and no convexity or concavity assumptions.
LA - eng
KW - mass transport problem; measurable selections; degree theory; mass transport problem; measurable selection; degree theory
UR - http://eudml.org/doc/37737
ER -

References

top
  1. Abdellaoui T., Heinich H., Sur la distance de deux lois dans le cas vectoriel, C.R. Acad. Sci. Paris Sér. I Math. 319 (1994), 397–400. (1994) Zbl0808.60008MR1289319
  2. Alberti G., Ambrosio L., A geometric approach to monotone functions in n , Math. Z. (1999), 230 259–316. (1999) MR1676726
  3. Ambrosio L., Lecture notes on optimal transport problems, Mathematical Aspects of Evolving Interfaces (P. Colli and J.F. Rodrigues, Eds.), Lecture Notes in Mathematics, 1812, Springer, Berlin, 2003, pp. 1–52. Zbl1047.35001MR2011032
  4. Ambrosio L., Gigli N., Savaré G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second Edition, Lecture Notes in Mathematics ETH Zürich, Birkhäuser, Basel, 2008. MR2401600
  5. Ball J.M., 10.1007/BF00279992, Arch. Rational Mech. Anal. 63 (1978), 337–403. (1978) MR0475169DOI10.1007/BF00279992
  6. Ball J.M., Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 315–328. (1981) Zbl0478.46032MR0616782
  7. Bolton P., Dewatripont M., Contract Theory, The MIT Press Cambridge (2005). (2005) 
  8. Brenier Y., Décomposition polaire et réarrangement monotone des champs de vecteurs, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 805–808. (1987) Zbl0652.26017MR0923203
  9. Brenier Y., Extended Monge-Kantorovich theory, Optimal Transportation and Applications (L.A. Caffarelli and S. Salsa, Eds.), Lecture Notes in Mathematics, 1813, Springer, Berlin, 2003, pp. 91–121. Zbl1064.49036MR2006306
  10. Brezis H., Analyse Fonctionelle, Masson Paris (1983). (1983) MR0697382
  11. Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, Boston, 2004. Zbl1095.49003MR2041617
  12. Carlier G., 10.1016/S0304-4068(00)00057-4, J. Math. Econom. 35 (2001), 129–150. (2001) Zbl0972.91068MR1817791DOI10.1016/S0304-4068(00)00057-4
  13. Carlier G., 10.1007/978-4-431-53979-7_1, Adv. Math. Econom. 5 (2003), 1–21. (2003) Zbl1176.90409MR2160899DOI10.1007/978-4-431-53979-7_1
  14. Carlier G., Dana R.A., 10.1016/j.jmateco.2004.12.004, J. Math. Econom. 41 (2005), 483–503. (2005) MR2143822DOI10.1016/j.jmateco.2004.12.004
  15. Carlier G., Jimenez Ch., On Monge's problem for Bregman-like cost function, J. Convex Anal. (2007), 14 647–656. (2007) MR2341308
  16. Clarke F.H., Optimization and Nonsmooth Analysis, Wiley-Interscience New York (1983). (1983) Zbl0582.49001MR0709590
  17. Cuesta-Albertos J.A., Matrán C., 10.1214/aop/1176991269, Ann. Probab. 17 (1989), 1264–1276. (1989) MR1009457DOI10.1214/aop/1176991269
  18. Evans L.C., Gangbo W., Differential equation methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc 137 (1999), 653. (1999) MR1464149
  19. Fathi A., Figalli A., Optimal transportation on non-compact manifold, Israel J. Math., to appear. 
  20. Gangbo W., McCann R.J., Optimal maps in Monge's mass transport problem, C.R. Acad. Sci. Paris Sér. I Math. 321 (1995), 1653–1658. (1995) Zbl0858.49002MR1367824
  21. Gangbo W., McCann R.J., 10.1007/BF02392620, Acta Math. 177 (1996), 113–161. (1996) Zbl0887.49017MR1440931DOI10.1007/BF02392620
  22. Giaquinta M., Modica G., Souček J., Cartesian Currents in the Calculus of Variations, I Springer Berlin (1998). (1998) MR1645086
  23. Kantorovich L.V., On a problem of Monge, Uspekhi Mat. Nauk SSSR 3 (1948), 225–226. (1948) 
  24. Kellerer H.G., 10.1007/BF00532047, Z. Wahrsch. Verw. Gebiete 67 (1984), 399–432. (1984) Zbl0535.60002MR0761565DOI10.1007/BF00532047
  25. Laffont J.J., Matimort D., The Theory of Incentives: The Agent-Principal Model, Princeton University Press Princeton (2001). (2001) 
  26. Levin V.L., 10.1023/A:1008753021652, Set-Valued Anal. 7 (1999), 7–32. (1999) Zbl0934.54013MR1699061DOI10.1023/A:1008753021652
  27. Ma X.N., Trudinger N., Wang X.J., 10.1007/s00205-005-0362-9, Arch. Rational Mech. Anal. 177 (2005), 151–183. (2005) Zbl1072.49035MR2188047DOI10.1007/s00205-005-0362-9
  28. Monge G., Memoire sur la Theorie des Déblais et des Remblais, Histoire de l'Acad. des Science de Paris, 1781. 
  29. Müller S., Qi T., Yan B.S., On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré 177 (1996), 113–161. (1996) 
  30. Plakhov A.Yu., 10.1070/SM2004v195n09ABEH000845, Mat. Sb. 195 9 (2004), 57–74; , Sb. Math. 195 no. 9 (2004), 1291–1307. (2004) Zbl1080.49030MR2122369DOI10.1070/SM2004v195n09ABEH000845
  31. Rachev S.T., Rüschendorf L.R., Mass Transportation Problem, Springer Berlin (1998). (1998) 
  32. Repovš D., Semenov P.V., Continuous Selections of Multivalued Mappings, Kluver Academic Dordrecht (1998). (1998) MR1659914
  33. Rochet J.C., 10.1016/0304-4068(87)90007-3, J. Math. Econom. 16 (1987), 191–200. (1987) MR0902976DOI10.1016/0304-4068(87)90007-3
  34. Rüschendorf L., Uckelmann L., 10.1007/s001840000052, Metrika 51 3 (2000), 245–258. (2000) MR1795372DOI10.1007/s001840000052
  35. Sudakov V.N., Geometric problems in the theory of infinite-dimensional probability distributions, Proc. Steklov Inst. Math. 141 (1979), 1–178. (1979) MR0530375
  36. Šverák V., 10.1007/BF00282200, Arch. Rational Mech. Anal. 100 (1988), 105–127. (1988) MR0913960DOI10.1007/BF00282200
  37. Trudinger N.S., Wang X.J., On the second boundary problem for Monge-Ampère type equations and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), 1 143–174; archived online at arxiv.org/abs/math.AP/0601086. (2009) MR2512204
  38. van der Putten R., Sul lemma dei valori critici e la formula della coarea, Boll. U.M.I. (7) 6-B (1992), 561–578. (1992) MR1191953
  39. Villani C., Optimal Transport, Old and New, Grundlehren der Mathematischen Wissenschaften, 338, Springer, Berlin, 2009; archived online at www.umpa.ens-lyon.fr/ . Zbl1156.53003MR2459454
  40. Ziemer W.P., Weakly Differentiable Functions, Graduate Texts in Mathematics, 120, Springer, New York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.