Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 1, page 67-83
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPutten, Roberto van der. "Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost." Commentationes Mathematicae Universitatis Carolinae 51.1 (2010): 67-83. <http://eudml.org/doc/37737>.
@article{Putten2010,
abstract = {In the setting of the optimal transportation problem we provide some conditions which ensure the existence and the uniqueness of the optimal map in the case of cost functions satisfying mild regularity hypothesis and no convexity or concavity assumptions.},
author = {Putten, Roberto van der},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {mass transport problem; measurable selections; degree theory; mass transport problem; measurable selection; degree theory},
language = {eng},
number = {1},
pages = {67-83},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost},
url = {http://eudml.org/doc/37737},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Putten, Roberto van der
TI - Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 1
SP - 67
EP - 83
AB - In the setting of the optimal transportation problem we provide some conditions which ensure the existence and the uniqueness of the optimal map in the case of cost functions satisfying mild regularity hypothesis and no convexity or concavity assumptions.
LA - eng
KW - mass transport problem; measurable selections; degree theory; mass transport problem; measurable selection; degree theory
UR - http://eudml.org/doc/37737
ER -
References
top- Abdellaoui T., Heinich H., Sur la distance de deux lois dans le cas vectoriel, C.R. Acad. Sci. Paris Sér. I Math. 319 (1994), 397–400. (1994) Zbl0808.60008MR1289319
- Alberti G., Ambrosio L., A geometric approach to monotone functions in , Math. Z. (1999), 230 259–316. (1999) MR1676726
- Ambrosio L., Lecture notes on optimal transport problems, Mathematical Aspects of Evolving Interfaces (P. Colli and J.F. Rodrigues, Eds.), Lecture Notes in Mathematics, 1812, Springer, Berlin, 2003, pp. 1–52. Zbl1047.35001MR2011032
- Ambrosio L., Gigli N., Savaré G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second Edition, Lecture Notes in Mathematics ETH Zürich, Birkhäuser, Basel, 2008. MR2401600
- Ball J.M., 10.1007/BF00279992, Arch. Rational Mech. Anal. 63 (1978), 337–403. (1978) MR0475169DOI10.1007/BF00279992
- Ball J.M., Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 315–328. (1981) Zbl0478.46032MR0616782
- Bolton P., Dewatripont M., Contract Theory, The MIT Press Cambridge (2005). (2005)
- Brenier Y., Décomposition polaire et réarrangement monotone des champs de vecteurs, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 805–808. (1987) Zbl0652.26017MR0923203
- Brenier Y., Extended Monge-Kantorovich theory, Optimal Transportation and Applications (L.A. Caffarelli and S. Salsa, Eds.), Lecture Notes in Mathematics, 1813, Springer, Berlin, 2003, pp. 91–121. Zbl1064.49036MR2006306
- Brezis H., Analyse Fonctionelle, Masson Paris (1983). (1983) MR0697382
- Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, Boston, 2004. Zbl1095.49003MR2041617
- Carlier G., 10.1016/S0304-4068(00)00057-4, J. Math. Econom. 35 (2001), 129–150. (2001) Zbl0972.91068MR1817791DOI10.1016/S0304-4068(00)00057-4
- Carlier G., 10.1007/978-4-431-53979-7_1, Adv. Math. Econom. 5 (2003), 1–21. (2003) Zbl1176.90409MR2160899DOI10.1007/978-4-431-53979-7_1
- Carlier G., Dana R.A., 10.1016/j.jmateco.2004.12.004, J. Math. Econom. 41 (2005), 483–503. (2005) MR2143822DOI10.1016/j.jmateco.2004.12.004
- Carlier G., Jimenez Ch., On Monge's problem for Bregman-like cost function, J. Convex Anal. (2007), 14 647–656. (2007) MR2341308
- Clarke F.H., Optimization and Nonsmooth Analysis, Wiley-Interscience New York (1983). (1983) Zbl0582.49001MR0709590
- Cuesta-Albertos J.A., Matrán C., 10.1214/aop/1176991269, Ann. Probab. 17 (1989), 1264–1276. (1989) MR1009457DOI10.1214/aop/1176991269
- Evans L.C., Gangbo W., Differential equation methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc 137 (1999), 653. (1999) MR1464149
- Fathi A., Figalli A., Optimal transportation on non-compact manifold, Israel J. Math., to appear.
- Gangbo W., McCann R.J., Optimal maps in Monge's mass transport problem, C.R. Acad. Sci. Paris Sér. I Math. 321 (1995), 1653–1658. (1995) Zbl0858.49002MR1367824
- Gangbo W., McCann R.J., 10.1007/BF02392620, Acta Math. 177 (1996), 113–161. (1996) Zbl0887.49017MR1440931DOI10.1007/BF02392620
- Giaquinta M., Modica G., Souček J., Cartesian Currents in the Calculus of Variations, I Springer Berlin (1998). (1998) MR1645086
- Kantorovich L.V., On a problem of Monge, Uspekhi Mat. Nauk SSSR 3 (1948), 225–226. (1948)
- Kellerer H.G., 10.1007/BF00532047, Z. Wahrsch. Verw. Gebiete 67 (1984), 399–432. (1984) Zbl0535.60002MR0761565DOI10.1007/BF00532047
- Laffont J.J., Matimort D., The Theory of Incentives: The Agent-Principal Model, Princeton University Press Princeton (2001). (2001)
- Levin V.L., 10.1023/A:1008753021652, Set-Valued Anal. 7 (1999), 7–32. (1999) Zbl0934.54013MR1699061DOI10.1023/A:1008753021652
- Ma X.N., Trudinger N., Wang X.J., 10.1007/s00205-005-0362-9, Arch. Rational Mech. Anal. 177 (2005), 151–183. (2005) Zbl1072.49035MR2188047DOI10.1007/s00205-005-0362-9
- Monge G., Memoire sur la Theorie des Déblais et des Remblais, Histoire de l'Acad. des Science de Paris, 1781.
- Müller S., Qi T., Yan B.S., On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré 177 (1996), 113–161. (1996)
- Plakhov A.Yu., 10.1070/SM2004v195n09ABEH000845, Mat. Sb. 195 9 (2004), 57–74; , Sb. Math. 195 no. 9 (2004), 1291–1307. (2004) Zbl1080.49030MR2122369DOI10.1070/SM2004v195n09ABEH000845
- Rachev S.T., Rüschendorf L.R., Mass Transportation Problem, Springer Berlin (1998). (1998)
- Repovš D., Semenov P.V., Continuous Selections of Multivalued Mappings, Kluver Academic Dordrecht (1998). (1998) MR1659914
- Rochet J.C., 10.1016/0304-4068(87)90007-3, J. Math. Econom. 16 (1987), 191–200. (1987) MR0902976DOI10.1016/0304-4068(87)90007-3
- Rüschendorf L., Uckelmann L., 10.1007/s001840000052, Metrika 51 3 (2000), 245–258. (2000) MR1795372DOI10.1007/s001840000052
- Sudakov V.N., Geometric problems in the theory of infinite-dimensional probability distributions, Proc. Steklov Inst. Math. 141 (1979), 1–178. (1979) MR0530375
- Šverák V., 10.1007/BF00282200, Arch. Rational Mech. Anal. 100 (1988), 105–127. (1988) MR0913960DOI10.1007/BF00282200
- Trudinger N.S., Wang X.J., On the second boundary problem for Monge-Ampère type equations and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), 1 143–174; archived online at arxiv.org/abs/math.AP/0601086. (2009) MR2512204
- van der Putten R., Sul lemma dei valori critici e la formula della coarea, Boll. U.M.I. (7) 6-B (1992), 561–578. (1992) MR1191953
- Villani C., Optimal Transport, Old and New, Grundlehren der Mathematischen Wissenschaften, 338, Springer, Berlin, 2009; archived online at www.umpa.ens-lyon.fr/ . Zbl1156.53003MR2459454
- Ziemer W.P., Weakly Differentiable Functions, Graduate Texts in Mathematics, 120, Springer, New York, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.