On the support of Fourier transform of weighted distributions

Martha Guzmán-Partida

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 1, page 57-66
  • ISSN: 0010-2628

Abstract

top
We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region x 1 0 and x 2 0 .

How to cite

top

Guzmán-Partida, Martha. "On the support of Fourier transform of weighted distributions." Commentationes Mathematicae Universitatis Carolinae 51.1 (2010): 57-66. <http://eudml.org/doc/37744>.

@article{Guzmán2010,
abstract = {We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region $x_\{1\}\ge 0$ and $x_\{2\}\ge 0$.},
author = {Guzmán-Partida, Martha},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$S^\{\prime \}$-convolution; weighted distribution spaces; Fourier transform; -convolution; weighted distribution space; Fourier transform},
language = {eng},
number = {1},
pages = {57-66},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the support of Fourier transform of weighted distributions},
url = {http://eudml.org/doc/37744},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Guzmán-Partida, Martha
TI - On the support of Fourier transform of weighted distributions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 1
SP - 57
EP - 66
AB - We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region $x_{1}\ge 0$ and $x_{2}\ge 0$.
LA - eng
KW - $S^{\prime }$-convolution; weighted distribution spaces; Fourier transform; -convolution; weighted distribution space; Fourier transform
UR - http://eudml.org/doc/37744
ER -

References

top
  1. Alvarez J., Carton-Lebrun C., Optimal spaces for the 𝒮 ' -convolution with the Marcel Riesz kernels and the n -dimensional Hilbert kernel, in Analysis of Divergence: Control and Management of Divergent Processes, W.O. Bray and Č.V. Stanojević (eds.), Birkhäuser, Boston, 1999, pp. 233–248. MR1731269
  2. Alvarez J., Guzmán-Partida M., 10.1016/S0022-247X(02)00078-1, J. Math. Anal. Appl. 270 (2002), 405–434. MR1915708DOI10.1016/S0022-247X(02)00078-1
  3. Barros-Neto J., An introduction to the theory of distributions, Marcel Dekker, New York, 1973. Zbl0512.46040MR0461128
  4. Dierolf P., Voigt J., Convolution and 𝒮 ' -convolution of distributions, Collect. Math. 29 (1978), 185–196. MR0565276
  5. Guzmán-Partida M., 10.1080/10652460701754778, Integral Transforms Spec. Funct. 19 (2008), no. 4, 235–248. MR2412225DOI10.1080/10652460701754778
  6. Hirata Y., Ogata H., On the exchange formula for distributions, J. Sci. Hiroshima Univ. Ser. A 22 (1958), 147–152. Zbl0088.08603MR0110014
  7. Mikusiński J., Criteria of the existence and of the associativity of the product of distributions, Studia Math. 21 (1962), 253–259. MR0141986
  8. Pandey J.N., Singh O.P., 10.1006/jmaa.1994.1260, J. Math. Anal. Appl. 185 (1994), 438–463. Zbl0812.42005MR1283069DOI10.1006/jmaa.1994.1260
  9. Shiraishi R., On the definition of convolutions for distributions, J. Sci. Hiroshima Univ. Ser. A 23 (1959), 19–32. Zbl0091.28601MR0114122
  10. Shiraishi R., Itano M., On the multiplicative products of distributions, J. Sci. Hiroshima Univ. Ser. A-I Math. 28 (1964), 223–235. Zbl0141.31901MR0218896
  11. Schwartz L., Causalité et analyticité, An. Acad. Brasil. Ci. 34 (1962) 13–21. Zbl0109.33903
  12. Schwartz L., Théorie des distributions, Hermann, Paris, 1966. Zbl0962.46025MR0209834

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.