On the support of Fourier transform of weighted distributions

Martha Guzmán-Partida

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 1, page 57-66
  • ISSN: 0010-2628

Abstract

top
We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region and .

How to cite

top

Guzmán-Partida, Martha. "On the support of Fourier transform of weighted distributions." Commentationes Mathematicae Universitatis Carolinae 51.1 (2010): 57-66. <http://eudml.org/doc/37744>.

@article{Guzmán2010,
abstract = {We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region $x_\{1\}\ge 0$ and $x_\{2\}\ge 0$.},
author = {Guzmán-Partida, Martha},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$S^\{\prime \}$-convolution; weighted distribution spaces; Fourier transform; -convolution; weighted distribution space; Fourier transform},
language = {eng},
number = {1},
pages = {57-66},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the support of Fourier transform of weighted distributions},
url = {http://eudml.org/doc/37744},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Guzmán-Partida, Martha
TI - On the support of Fourier transform of weighted distributions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 1
SP - 57
EP - 66
AB - We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region $x_{1}\ge 0$ and $x_{2}\ge 0$.
LA - eng
KW - $S^{\prime }$-convolution; weighted distribution spaces; Fourier transform; -convolution; weighted distribution space; Fourier transform
UR - http://eudml.org/doc/37744
ER -

References

top
  1. Alvarez J., Carton-Lebrun C., Optimal spaces for the -convolution with the Marcel Riesz kernels and the -dimensional Hilbert kernel, in Analysis of Divergence: Control and Management of Divergent Processes, W.O. Bray and Č.V. Stanojević (eds.), Birkhäuser, Boston, 1999, pp. 233–248. MR1731269
  2. Alvarez J., Guzmán-Partida M., 10.1016/S0022-247X(02)00078-1, J. Math. Anal. Appl. 270 (2002), 405–434. MR1915708DOI10.1016/S0022-247X(02)00078-1
  3. Barros-Neto J., An introduction to the theory of distributions, Marcel Dekker, New York, 1973. Zbl0512.46040MR0461128
  4. Dierolf P., Voigt J., Convolution and -convolution of distributions, Collect. Math. 29 (1978), 185–196. MR0565276
  5. Guzmán-Partida M., 10.1080/10652460701754778, Integral Transforms Spec. Funct. 19 (2008), no. 4, 235–248. MR2412225DOI10.1080/10652460701754778
  6. Hirata Y., Ogata H., On the exchange formula for distributions, J. Sci. Hiroshima Univ. Ser. A 22 (1958), 147–152. Zbl0088.08603MR0110014
  7. Mikusiński J., Criteria of the existence and of the associativity of the product of distributions, Studia Math. 21 (1962), 253–259. MR0141986
  8. Pandey J.N., Singh O.P., 10.1006/jmaa.1994.1260, J. Math. Anal. Appl. 185 (1994), 438–463. Zbl0812.42005MR1283069DOI10.1006/jmaa.1994.1260
  9. Shiraishi R., On the definition of convolutions for distributions, J. Sci. Hiroshima Univ. Ser. A 23 (1959), 19–32. Zbl0091.28601MR0114122
  10. Shiraishi R., Itano M., On the multiplicative products of distributions, J. Sci. Hiroshima Univ. Ser. A-I Math. 28 (1964), 223–235. Zbl0141.31901MR0218896
  11. Schwartz L., Causalité et analyticité, An. Acad. Brasil. Ci. 34 (1962) 13–21. Zbl0109.33903
  12. Schwartz L., Théorie des distributions, Hermann, Paris, 1966. Zbl0962.46025MR0209834

NotesEmbed ?

top

You must be logged in to post comments.