A quasistatic bilateral contact problem with adhesion and friction for viscoelastic materials
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 1, page 85-97
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTouzaline, Arezki. "A quasistatic bilateral contact problem with adhesion and friction for viscoelastic materials." Commentationes Mathematicae Universitatis Carolinae 51.1 (2010): 85-97. <http://eudml.org/doc/37746>.
@article{Touzaline2010,
abstract = {We consider a mathematical model which describes a contact problem between a deformable body and a foundation. The contact is bilateral and is modelled with Tresca's friction law in which adhesion is taken into account. The evolution of the bonding field is described by a first order differential equation and the material's behavior is modelled with a nonlinear viscoelastic constitutive law. We derive a variational formulation of the mechanical problem and prove the existence and uniqueness result of the weak solution. The proof is based on arguments of time-dependent variational inequalities, differential equations and Banach fixed point theorem.},
author = {Touzaline, Arezki},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {viscoelastic materials; adhesion; Tresca's friction; fixed point; weak solution; contact problem; viscoelastic material; Tresca's friction; adhesion; existence; unicity; Banach fixed point theorem},
language = {eng},
number = {1},
pages = {85-97},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A quasistatic bilateral contact problem with adhesion and friction for viscoelastic materials},
url = {http://eudml.org/doc/37746},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Touzaline, Arezki
TI - A quasistatic bilateral contact problem with adhesion and friction for viscoelastic materials
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 1
SP - 85
EP - 97
AB - We consider a mathematical model which describes a contact problem between a deformable body and a foundation. The contact is bilateral and is modelled with Tresca's friction law in which adhesion is taken into account. The evolution of the bonding field is described by a first order differential equation and the material's behavior is modelled with a nonlinear viscoelastic constitutive law. We derive a variational formulation of the mechanical problem and prove the existence and uniqueness result of the weak solution. The proof is based on arguments of time-dependent variational inequalities, differential equations and Banach fixed point theorem.
LA - eng
KW - viscoelastic materials; adhesion; Tresca's friction; fixed point; weak solution; contact problem; viscoelastic material; Tresca's friction; adhesion; existence; unicity; Banach fixed point theorem
UR - http://eudml.org/doc/37746
ER -
References
top- Awbi B., Chau O., Sofonea A., Variational analysis of a frictional contact problem for viscoelastic bodies, Int. Math. J. 1 (2002), no. 4, 333–348. Zbl1002.74074MR1846749
- Brezis H., 10.5802/aif.280, Annales Inst. Fourier 18 (1968), 115–175. Zbl0169.18602MR0270222DOI10.5802/aif.280
- Cangémi L., Frottement et adhérence: modèle, traitement numérique et application à l'interface fibre/matrice, Ph.D. Thesis, Univ. Méditerranée, Aix Marseille I, 1997.
- Chau O., Fernandez J.R., Shillor M., Sofonea M., 10.1016/S0377-0427(03)00547-8, J. Computational and Applied Mathematics 159 (2003), 431–465. Zbl1075.74061MR2005970DOI10.1016/S0377-0427(03)00547-8
- Chau O., Shillor M., Sofonea M., 10.1007/s00033-003-1089-9, Z. Angew. Math. Phys. 55 (2004), 32–47. Zbl1064.74132MR2033859DOI10.1007/s00033-003-1089-9
- Cocu M., Rocca R., 10.1051/m2an:2000112, Math. Model. Numer. Anal. 34 (2000), 981–1001. Zbl0984.74054MR1837764DOI10.1051/m2an:2000112
- Duvaut G., Lions J.-L., Les inéquations en mécanique et en physique, Dunod, Paris, 1972. Zbl0298.73001MR0464857
- Fernandez J.R., Shillor M., Sofonea M., 10.1016/S0895-7177(03)90043-4, Math. Comput. Modelling 37 (2003) 1317–1333. MR1996040DOI10.1016/S0895-7177(03)90043-4
- Frémond M., Adhérence des solides, J. Méc. Théor. Appl. 6 (1987), 383–407.
- Frémond M., Equilibre des structures qui adhèrent à leur support, C.R. Acad. Sci. Paris Sér. II 295, (1982), 913–916. MR0695554
- Frémond M., Non-smooth Thermomechanics, Springer, Berlin, 2002. MR1885252
- Nassar S.A., Andrews T., Kruk S., Shillor M., 10.1016/j.mcm.2004.07.018, Math. Comput. Modelling 42 (2005), 553–572. Zbl1121.74428MR2173474DOI10.1016/j.mcm.2004.07.018
- Raous M., Cangémi L., Cocu M., 10.1016/S0045-7825(98)00389-2, Comput. Methods Appl. Mech. Engrg. 177 (1999), 383–399. MR1710458DOI10.1016/S0045-7825(98)00389-2
- Rojek J., Telega J.J., Contact problems with friction, adhesion and wear in orthopeadic biomechanics. I: General developements, J. Theor. Appl. Mech. 39 (2001), 655–677.
- Shillor M., Sofonea M., Telega J.J., 10.1007/b99799, Lecture Notes in Physics, 655, Springer, Berlin, 2004. DOI10.1007/b99799
- Sofonea M., Han W., Shillor M., Analysis and Approximations of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, 276, Chapman & Hall / CRC Press, Boca Raton, Florida, 2006. MR2183435
- Sofonea M., Hoarau-Mantel T.V., Elastic frictionless contact problems with adhesion, Adv. Math. Sci. Appl. 15 (2005), no. 1, 49–68. Zbl1085.74036MR2148278
- Sofonea M., Arhab R., Tarraf R., Analysis of electroelastic frictionless contact problems with adhesion, J. Appl. Math. 2006, ID 64217, pp.1–25. Zbl1143.74042MR2251808
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.