Openly factorizable spaces and compact extensions of topological semigroups

Taras O. Banakh; Svetlana Dimitrova

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 1, page 113-131
  • ISSN: 0010-2628

Abstract

top
We prove that the semigroup operation of a topological semigroup S extends to a continuous semigroup operation on its Stone-Čech compactification β S provided S is a pseudocompact openly factorizable space, which means that each map f : S Y to a second countable space Y can be written as the composition f = g p of an open map p : X Z onto a second countable space Z and a map g : Z Y . We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.

How to cite

top

Banakh, Taras O., and Dimitrova, Svetlana. "Openly factorizable spaces and compact extensions of topological semigroups." Commentationes Mathematicae Universitatis Carolinae 51.1 (2010): 113-131. <http://eudml.org/doc/37747>.

@article{Banakh2010,
abstract = {We prove that the semigroup operation of a topological semigroup $S$ extends to a continuous semigroup operation on its Stone-Čech compactification $\beta S$ provided $S$ is a pseudocompact openly factorizable space, which means that each map $f:S\rightarrow Y$ to a second countable space $Y$ can be written as the composition $f=g\circ p$ of an open map $p:X\rightarrow Z$ onto a second countable space $Z$ and a map $g:Z\rightarrow Y$. We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.},
author = {Banakh, Taras O., Dimitrova, Svetlana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {topological semigroup; semigroup compactification; inverse spectrum; pseudocompact space; openly factorizable space; openly generated space; Eberlein compact; Corson compact; Valdivia compact; topological semigroup; extension of operation to compactification},
language = {eng},
number = {1},
pages = {113-131},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Openly factorizable spaces and compact extensions of topological semigroups},
url = {http://eudml.org/doc/37747},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Banakh, Taras O.
AU - Dimitrova, Svetlana
TI - Openly factorizable spaces and compact extensions of topological semigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 1
SP - 113
EP - 131
AB - We prove that the semigroup operation of a topological semigroup $S$ extends to a continuous semigroup operation on its Stone-Čech compactification $\beta S$ provided $S$ is a pseudocompact openly factorizable space, which means that each map $f:S\rightarrow Y$ to a second countable space $Y$ can be written as the composition $f=g\circ p$ of an open map $p:X\rightarrow Z$ onto a second countable space $Z$ and a map $g:Z\rightarrow Y$. We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.
LA - eng
KW - topological semigroup; semigroup compactification; inverse spectrum; pseudocompact space; openly factorizable space; openly generated space; Eberlein compact; Corson compact; Valdivia compact; topological semigroup; extension of operation to compactification
UR - http://eudml.org/doc/37747
ER -

References

top
  1. Arhangel'skii A.V., Eberlein compacta, in Encyclopedia of General Topology. (K.P. Hart, J. Nagata, J. Vaughan, eds.), Elsevier Sci. Publ., Amsterdam, 2004, pp. 145–146. MR2049453
  2. Arhangel'skii A.V., Hušek M., Extensions of topological and semitopological groups and product operations, Comment. Math. Univ. Carolin. 42:1 (2001), 173–186. MR1825381
  3. Banakh T., Dimitrova S., Gutik O., Embedding the bicyclic semigroup into countably compact topological semigroups, preprint (arXiv:0811.4276). MR2729339
  4. Banakh T., Chigogidze A., Fedorchuk V.V., On spaces of σ -additive probability measures, Topology Appl. 133:2 (2003), 139–155. Zbl1027.28006MR1997961
  5. Berglund J., Junghenn H., Milnes P., Analysis on Semigroups. Function Spaces, Compactifications, Representations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Zbl0727.22001MR0999922
  6. Carruth J.H., Hildebrant J.A., Koch R.J., The Theory of Topological Semigroups, Marcel Dekker, New York, 1983. Zbl0581.22001MR0691307
  7. Engelking R., General Topology, PWN, Warsaw, 1977. Zbl0684.54001MR0500780
  8. Chigogidze A., Fedorchuk V.V., Absolute Retracts and Infinite-dimensional Manifolds, Nauka, Moscow, 1992 (in Russian). Zbl0762.54017MR1202238
  9. Hindman N., Strauss D., Algebra in the Stone-Čech Compactification. Theory and Applications, de Gruyter Expositions in Mathematics, 27, Walter de Gruyter, Berlin, 1998. Zbl0918.22001MR1642231
  10. Haydon R., On a problem of Pelczynski: Milutin spaces, Dugundji spaces and AE(0-dim), , Studia Math. 52 (1974), 23–31. Zbl0294.46016MR0418025
  11. Kalenda O., Valdivia compact spaces in topology and Banach space theory, Extracta Math. 15:1 (2000), 1–85. Zbl0983.46021MR1792980
  12. Kalenda O., 10.1016/j.jmaa.2007.07.069, J. Math. Anal. Appl. 340:1 (2008), 81–101. Zbl1166.46007MR2376139DOI10.1016/j.jmaa.2007.07.069
  13. Kalenda O., Kubiś W., The structure of Valdivia compact lines, preprint (arXiv:0811.4144). MR2607079
  14. Megrelishvili M., 10.1007/s002330010076, Semigroup Forum 63:3 (2001), 357–370. MR1851816DOI10.1007/s002330010076
  15. Pestov V., Tkachenko M., Problem 3.28, in Unsolved Problems of Topological ALgebra, Acad. of Sci. Moldova, Kishinev, “Shtiinca” 1985, p. 18. 
  16. Reznichenko E.A., 10.1016/0166-8641(94)90021-3, Topology Appl. 59:3 (1994), 233–244. Zbl0835.22001MR1299719DOI10.1016/0166-8641(94)90021-3
  17. Reznichenko E.A., Uspenskij V.V., 10.1016/S0166-8641(97)00124-7, Topology Appl. 86:1 (1998), 83–104. Zbl0938.54027MR1619345DOI10.1016/S0166-8641(97)00124-7
  18. Ruppert W., Compact Semitopological Semigroups: An Intrinsic Theory, Lecture Notes in Mathematics, 1079, Springer, Berlin, 1984. Zbl0606.22001MR0762985
  19. Shakhmatov D., Compact spaces and their generalizations, in Recent Progress in General Topology (Prague, 1991), 571–640, North-Holland, Amsterdam, 1992. Zbl0801.54001MR1229139
  20. Shapiro L.B., The space of closed subsets of D 2 is not a dyadic bicompactum, Dokl. Akad. Nauk SSSR 228:6 (1976), 1302–1305. Zbl0342.54031MR0410635
  21. Ščepin E.V., Functors and uncountable powers of compacta, Uspekhi Mat. Nauk 36 (1981), no. 3(219), 3–62. MR0622720
  22. Teleiko A., Zarichnyi M., Categorical Topology of Compact Hausdorff Spaces, Monograph Series, 5, VNTL Publishers, L'viv, 1999. Zbl1032.54004MR1783651

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.