Openly factorizable spaces and compact extensions of topological semigroups
Taras O. Banakh; Svetlana Dimitrova
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 1, page 113-131
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanakh, Taras O., and Dimitrova, Svetlana. "Openly factorizable spaces and compact extensions of topological semigroups." Commentationes Mathematicae Universitatis Carolinae 51.1 (2010): 113-131. <http://eudml.org/doc/37747>.
@article{Banakh2010,
abstract = {We prove that the semigroup operation of a topological semigroup $S$ extends to a continuous semigroup operation on its Stone-Čech compactification $\beta S$ provided $S$ is a pseudocompact openly factorizable space, which means that each map $f:S\rightarrow Y$ to a second countable space $Y$ can be written as the composition $f=g\circ p$ of an open map $p:X\rightarrow Z$ onto a second countable space $Z$ and a map $g:Z\rightarrow Y$. We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.},
author = {Banakh, Taras O., Dimitrova, Svetlana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {topological semigroup; semigroup compactification; inverse spectrum; pseudocompact space; openly factorizable space; openly generated space; Eberlein compact; Corson compact; Valdivia compact; topological semigroup; extension of operation to compactification},
language = {eng},
number = {1},
pages = {113-131},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Openly factorizable spaces and compact extensions of topological semigroups},
url = {http://eudml.org/doc/37747},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Banakh, Taras O.
AU - Dimitrova, Svetlana
TI - Openly factorizable spaces and compact extensions of topological semigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 1
SP - 113
EP - 131
AB - We prove that the semigroup operation of a topological semigroup $S$ extends to a continuous semigroup operation on its Stone-Čech compactification $\beta S$ provided $S$ is a pseudocompact openly factorizable space, which means that each map $f:S\rightarrow Y$ to a second countable space $Y$ can be written as the composition $f=g\circ p$ of an open map $p:X\rightarrow Z$ onto a second countable space $Z$ and a map $g:Z\rightarrow Y$. We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.
LA - eng
KW - topological semigroup; semigroup compactification; inverse spectrum; pseudocompact space; openly factorizable space; openly generated space; Eberlein compact; Corson compact; Valdivia compact; topological semigroup; extension of operation to compactification
UR - http://eudml.org/doc/37747
ER -
References
top- Arhangel'skii A.V., Eberlein compacta, in Encyclopedia of General Topology. (K.P. Hart, J. Nagata, J. Vaughan, eds.), Elsevier Sci. Publ., Amsterdam, 2004, pp. 145–146. MR2049453
- Arhangel'skii A.V., Hušek M., Extensions of topological and semitopological groups and product operations, Comment. Math. Univ. Carolin. 42:1 (2001), 173–186. MR1825381
- Banakh T., Dimitrova S., Gutik O., Embedding the bicyclic semigroup into countably compact topological semigroups, preprint (arXiv:0811.4276). MR2729339
- Banakh T., Chigogidze A., Fedorchuk V.V., On spaces of -additive probability measures, Topology Appl. 133:2 (2003), 139–155. Zbl1027.28006MR1997961
- Berglund J., Junghenn H., Milnes P., Analysis on Semigroups. Function Spaces, Compactifications, Representations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Zbl0727.22001MR0999922
- Carruth J.H., Hildebrant J.A., Koch R.J., The Theory of Topological Semigroups, Marcel Dekker, New York, 1983. Zbl0581.22001MR0691307
- Engelking R., General Topology, PWN, Warsaw, 1977. Zbl0684.54001MR0500780
- Chigogidze A., Fedorchuk V.V., Absolute Retracts and Infinite-dimensional Manifolds, Nauka, Moscow, 1992 (in Russian). Zbl0762.54017MR1202238
- Hindman N., Strauss D., Algebra in the Stone-Čech Compactification. Theory and Applications, de Gruyter Expositions in Mathematics, 27, Walter de Gruyter, Berlin, 1998. Zbl0918.22001MR1642231
- Haydon R., On a problem of Pelczynski: Milutin spaces, Dugundji spaces and AE(0-dim), , Studia Math. 52 (1974), 23–31. Zbl0294.46016MR0418025
- Kalenda O., Valdivia compact spaces in topology and Banach space theory, Extracta Math. 15:1 (2000), 1–85. Zbl0983.46021MR1792980
- Kalenda O., 10.1016/j.jmaa.2007.07.069, J. Math. Anal. Appl. 340:1 (2008), 81–101. Zbl1166.46007MR2376139DOI10.1016/j.jmaa.2007.07.069
- Kalenda O., Kubiś W., The structure of Valdivia compact lines, preprint (arXiv:0811.4144). MR2607079
- Megrelishvili M., 10.1007/s002330010076, Semigroup Forum 63:3 (2001), 357–370. MR1851816DOI10.1007/s002330010076
- Pestov V., Tkachenko M., Problem 3.28, in Unsolved Problems of Topological ALgebra, Acad. of Sci. Moldova, Kishinev, “Shtiinca” 1985, p. 18.
- Reznichenko E.A., 10.1016/0166-8641(94)90021-3, Topology Appl. 59:3 (1994), 233–244. Zbl0835.22001MR1299719DOI10.1016/0166-8641(94)90021-3
- Reznichenko E.A., Uspenskij V.V., 10.1016/S0166-8641(97)00124-7, Topology Appl. 86:1 (1998), 83–104. Zbl0938.54027MR1619345DOI10.1016/S0166-8641(97)00124-7
- Ruppert W., Compact Semitopological Semigroups: An Intrinsic Theory, Lecture Notes in Mathematics, 1079, Springer, Berlin, 1984. Zbl0606.22001MR0762985
- Shakhmatov D., Compact spaces and their generalizations, in Recent Progress in General Topology (Prague, 1991), 571–640, North-Holland, Amsterdam, 1992. Zbl0801.54001MR1229139
- Shapiro L.B., The space of closed subsets of is not a dyadic bicompactum, Dokl. Akad. Nauk SSSR 228:6 (1976), 1302–1305. Zbl0342.54031MR0410635
- Ščepin E.V., Functors and uncountable powers of compacta, Uspekhi Mat. Nauk 36 (1981), no. 3(219), 3–62. MR0622720
- Teleiko A., Zarichnyi M., Categorical Topology of Compact Hausdorff Spaces, Monograph Series, 5, VNTL Publishers, L'viv, 1999. Zbl1032.54004MR1783651
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.