Nonassociativity in VOA theory and finite group theory

Jr. Griess, Robert L.

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 2, page 237-244
  • ISSN: 0010-2628

Abstract

top
We discuss some examples of nonassociative algebras which occur in VOA (vertex operator algebra) theory and finite group theory. Methods of VOA theory and finite group theory provide a lot of nonassociative algebras to study. Ideas from nonassociative algebra theory could be useful to group theorists and VOA theorists.

How to cite

top

Griess, Robert L., Jr.. "Nonassociativity in VOA theory and finite group theory." Commentationes Mathematicae Universitatis Carolinae 51.2 (2010): 237-244. <http://eudml.org/doc/37755>.

@article{Griess2010,
abstract = {We discuss some examples of nonassociative algebras which occur in VOA (vertex operator algebra) theory and finite group theory. Methods of VOA theory and finite group theory provide a lot of nonassociative algebras to study. Ideas from nonassociative algebra theory could be useful to group theorists and VOA theorists.},
author = {Griess, Robert L., Jr.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonassociative algebra; nonassociative commutative algebra; groups of Lie type; sporadic groups; vertex operator algebras; lattice type vertex operator algebras; axioms; $(B,N)$-pair; monster; $2A$-involutions; Jordan algebra; pairwise orthogonal idempotents; $E_8$; $E_6$; polynomial identity; sporadic group; vertex operator algebra; nonassociative algebra; lattice type vertex oriented algebra},
language = {eng},
number = {2},
pages = {237-244},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Nonassociativity in VOA theory and finite group theory},
url = {http://eudml.org/doc/37755},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Griess, Robert L., Jr.
TI - Nonassociativity in VOA theory and finite group theory
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 2
SP - 237
EP - 244
AB - We discuss some examples of nonassociative algebras which occur in VOA (vertex operator algebra) theory and finite group theory. Methods of VOA theory and finite group theory provide a lot of nonassociative algebras to study. Ideas from nonassociative algebra theory could be useful to group theorists and VOA theorists.
LA - eng
KW - nonassociative algebra; nonassociative commutative algebra; groups of Lie type; sporadic groups; vertex operator algebras; lattice type vertex operator algebras; axioms; $(B,N)$-pair; monster; $2A$-involutions; Jordan algebra; pairwise orthogonal idempotents; $E_8$; $E_6$; polynomial identity; sporadic group; vertex operator algebra; nonassociative algebra; lattice type vertex oriented algebra
UR - http://eudml.org/doc/37755
ER -

References

top
  1. Cohen A.M., Griess R.L., Jr., On finite simple subgroups of the complex Lie group of type E 8 , The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 367–405, Proc. Sympos. Pure Math., 47, Part 2, Amer. Math. Soc., Providence, RI, 1987. . MR0933426
  2. Ashihara T., Miyamoto M., Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras, J. Algebra 321 (2009), no. 6, 1593–1599. MR2498258
  3. Cohen A.M., Wales D.B., Finite subgroups of F 4 ( C ) and E 6 ( C ) , Proc. London Math. Soc. (3) 74 (1997), no. 1, 105–150. MR1416728
  4. Conway J.H., A simple construction for the Fischer-Griess monster group, Invent. Math. 79 (1985), no. 3, 513–540. Zbl0564.20010MR0782233
  5. Dong C., Nagatomo K., Automorphism groups and twisted modules for lattice vertex operator algebras, in Recent Developments in Quantum Affine Algebras and Related Topics, Contemp. Math., 248, pp. 117–133, Amer. Math. Soc., Providence, RI, 1999. Zbl0953.17014MR1745258
  6. Dong C., Griess R.L., Jr., Rank one lattice type vertex operator algebras and their automorphism groups, J. Algebra 208 (1998), 262–275. q-alg/9710017. Zbl1028.17019MR1644007
  7. Dong C., Griess, R.L., Jr., Ryba A.J.E., Rank one lattice type vertex operator algebras and their automorphism groups, II: E-series, J. Algebra 217 (1999), 701–710. Zbl1028.17019MR1700522
  8. Frenkel I., Lepowsky J., Meurman A., Vertex Operator Algebras and the Monster, Pure and Applied Math., 134, Academic Press, Boston, 1988. Zbl0674.17001MR0996026
  9. Gebert R.W., Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebra, Internat. J. Modern Phys. A 8 (1993), no. 31, 5441–5503. Zbl0860.17039MR1248070
  10. Griess R.L., Jr., A construction of F 1 as automorphisms of a 196 , 883 -dimensional algebra, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 686–691. Zbl0452.20020MR0605419
  11. Griess R.L., Jr., The friendly giant, Invent. Math. 69 (1982), 1–102. Zbl0498.20013MR0671653
  12. Griess R.L., Jr., Sporadic groups, code loops and nonvanishing cohomology, J. Pure Appl. Algebra 44 (1987), 191–214. Zbl0611.20009MR0885104
  13. Griess R.L., Jr., Code loops and a large finite group containing triality for D 4 , Proc. Atti del Convegno Internazionale di Teoria Dei Gruppi e Geometria Combinatoria (Firenze, October 1986), Serie II, 19, 1988, pp. 79–98. MR0988189
  14. Griess R.L., Jr., A Moufang loop, the exceptional Jordan algebra and a cubic form in 27 variables, J. Algebra 131 (1990), no. 1, 281–293. Zbl0718.17028MR1055009
  15. Griess R.L., Jr., Codes, Loops and p -Locals, Groups, Difference Sets and the Monster (Columbus, OH, 1993), pp. 369–375, de Gruyter, Berlin, 1996. Zbl0865.94030MR1400428
  16. Griess R.L., Jr., A vertex operator algebra related to E 8 with automorphism group O + ( 10 , 2 ) , The Monster and Lie Algebras (Columbus, OH 1996), ed. J. Ferrar, K. Harada, de Gruyter, Berlin, 1998. MR1650633
  17. Griess R.L., Jr., The monster and its nonassociative algebra, in Proceedings of the Montreal Conference on Finite Groups, Contemporary Mathematics, 45, 121-157, 1985, American Mathematical Society, Providence, RI. Zbl0582.20007MR0822237
  18. Griess R.L., Jr., Ryba A.J.E., Finite simple groups which projectively embed in an exceptional Lie group are classified!, Bull. Amer. Math. Soc. 36 (1999), no. 1, 75–93. Zbl0916.22008MR1653177
  19. Griess R.L., Jr., Ryba A.J.E., Quasisimple finite subgroups of exceptional algebraic groups, Journal of Group Theory, 2002, 1–39. MR1879514
  20. Griess R.L., Jr., Höhn G., Virasoro frames and their stabilizers for the E 8 lattice type vertex operator algebra, J. Reine Angew. Math. 561 (2003), 1–37. MR1998606
  21. Griess R.L., Jr., GNAVOA, I. Studies in groups, nonassociative algebras and vertex operator algbras, Vertex Operator Algebras in Mathematics and Physics (Toronto, 2000), pp. 71–88, Fields Ins. Commun., 39, Amer. Math. Soc., Providence, 2003. MR2029791
  22. Lam C.H., Construction of vertex operator algebras from commutative associative algebras, Comm. Algebra 24 (1996), no. 14, 4339–4360. Zbl0892.17020MR1421193
  23. Lam C.H., On VOA associated with special Jordan algebras, Comm. Algebra 27 (1999), no. 4, 1665–1681. Zbl0934.17016MR1679676
  24. Miyamoto M., Griess algebras and conformal vectors in vertex operator algebras, J. Algebra 179 (1996), no. 2, 523–548. Zbl0964.17021MR1367861
  25. Meyer W., Neutsch W., Associative subalgebras of the Griess algebra, J. Algebra 158 (1993), no. 1, 1–17. Zbl0789.17002MR1223664
  26. Norton S., The Monster Algebra: some new formulae, appeared in AMS Contemp. Math. 193 “Moonshine, the Monster and Related Topics” (eds. Chongying Dong and Geoffrey Mason), 1996, pp. 297–306 (Conference at Mount Holyoke, 1994). Zbl0847.11023MR1372728
  27. Roitman M., On Griess algebras, Symmetry, Integrability and Geometry, Methods and Applications, SIGMA 4 (2008); http://www.emis.de/journals/SIGMA/2008/057/. MR2434941
  28. Smith S.D., Nonassociative commutative algebras for triple covers of 3 -transposition groups, Michigan Math. J. 24 (1977), 273–287. Zbl0391.20011MR0491931

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.