Nonassociativity in VOA theory and finite group theory
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 2, page 237-244
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGriess, Robert L., Jr.. "Nonassociativity in VOA theory and finite group theory." Commentationes Mathematicae Universitatis Carolinae 51.2 (2010): 237-244. <http://eudml.org/doc/37755>.
@article{Griess2010,
abstract = {We discuss some examples of nonassociative algebras which occur in VOA (vertex operator algebra) theory and finite group theory. Methods of VOA theory and finite group theory provide a lot of nonassociative algebras to study. Ideas from nonassociative algebra theory could be useful to group theorists and VOA theorists.},
author = {Griess, Robert L., Jr.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonassociative algebra; nonassociative commutative algebra; groups of Lie type; sporadic groups; vertex operator algebras; lattice type vertex operator algebras; axioms; $(B,N)$-pair; monster; $2A$-involutions; Jordan algebra; pairwise orthogonal idempotents; $E_8$; $E_6$; polynomial identity; sporadic group; vertex operator algebra; nonassociative algebra; lattice type vertex oriented algebra},
language = {eng},
number = {2},
pages = {237-244},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Nonassociativity in VOA theory and finite group theory},
url = {http://eudml.org/doc/37755},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Griess, Robert L., Jr.
TI - Nonassociativity in VOA theory and finite group theory
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 2
SP - 237
EP - 244
AB - We discuss some examples of nonassociative algebras which occur in VOA (vertex operator algebra) theory and finite group theory. Methods of VOA theory and finite group theory provide a lot of nonassociative algebras to study. Ideas from nonassociative algebra theory could be useful to group theorists and VOA theorists.
LA - eng
KW - nonassociative algebra; nonassociative commutative algebra; groups of Lie type; sporadic groups; vertex operator algebras; lattice type vertex operator algebras; axioms; $(B,N)$-pair; monster; $2A$-involutions; Jordan algebra; pairwise orthogonal idempotents; $E_8$; $E_6$; polynomial identity; sporadic group; vertex operator algebra; nonassociative algebra; lattice type vertex oriented algebra
UR - http://eudml.org/doc/37755
ER -
References
top- Cohen A.M., Griess R.L., Jr., On finite simple subgroups of the complex Lie group of type , The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 367–405, Proc. Sympos. Pure Math., 47, Part 2, Amer. Math. Soc., Providence, RI, 1987. . MR0933426
- Ashihara T., Miyamoto M., Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras, J. Algebra 321 (2009), no. 6, 1593–1599. MR2498258
- Cohen A.M., Wales D.B., Finite subgroups of and , Proc. London Math. Soc. (3) 74 (1997), no. 1, 105–150. MR1416728
- Conway J.H., A simple construction for the Fischer-Griess monster group, Invent. Math. 79 (1985), no. 3, 513–540. Zbl0564.20010MR0782233
- Dong C., Nagatomo K., Automorphism groups and twisted modules for lattice vertex operator algebras, in Recent Developments in Quantum Affine Algebras and Related Topics, Contemp. Math., 248, pp. 117–133, Amer. Math. Soc., Providence, RI, 1999. Zbl0953.17014MR1745258
- Dong C., Griess R.L., Jr., Rank one lattice type vertex operator algebras and their automorphism groups, J. Algebra 208 (1998), 262–275. q-alg/9710017. Zbl1028.17019MR1644007
- Dong C., Griess, R.L., Jr., Ryba A.J.E., Rank one lattice type vertex operator algebras and their automorphism groups, II: E-series, J. Algebra 217 (1999), 701–710. Zbl1028.17019MR1700522
- Frenkel I., Lepowsky J., Meurman A., Vertex Operator Algebras and the Monster, Pure and Applied Math., 134, Academic Press, Boston, 1988. Zbl0674.17001MR0996026
- Gebert R.W., Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebra, Internat. J. Modern Phys. A 8 (1993), no. 31, 5441–5503. Zbl0860.17039MR1248070
- Griess R.L., Jr., A construction of as automorphisms of a -dimensional algebra, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 686–691. Zbl0452.20020MR0605419
- Griess R.L., Jr., The friendly giant, Invent. Math. 69 (1982), 1–102. Zbl0498.20013MR0671653
- Griess R.L., Jr., Sporadic groups, code loops and nonvanishing cohomology, J. Pure Appl. Algebra 44 (1987), 191–214. Zbl0611.20009MR0885104
- Griess R.L., Jr., Code loops and a large finite group containing triality for , Proc. Atti del Convegno Internazionale di Teoria Dei Gruppi e Geometria Combinatoria (Firenze, October 1986), Serie II, 19, 1988, pp. 79–98. MR0988189
- Griess R.L., Jr., A Moufang loop, the exceptional Jordan algebra and a cubic form in variables, J. Algebra 131 (1990), no. 1, 281–293. Zbl0718.17028MR1055009
- Griess R.L., Jr., Codes, Loops and -Locals, Groups, Difference Sets and the Monster (Columbus, OH, 1993), pp. 369–375, de Gruyter, Berlin, 1996. Zbl0865.94030MR1400428
- Griess R.L., Jr., A vertex operator algebra related to with automorphism group , The Monster and Lie Algebras (Columbus, OH 1996), ed. J. Ferrar, K. Harada, de Gruyter, Berlin, 1998. MR1650633
- Griess R.L., Jr., The monster and its nonassociative algebra, in Proceedings of the Montreal Conference on Finite Groups, Contemporary Mathematics, 45, 121-157, 1985, American Mathematical Society, Providence, RI. Zbl0582.20007MR0822237
- Griess R.L., Jr., Ryba A.J.E., Finite simple groups which projectively embed in an exceptional Lie group are classified!, Bull. Amer. Math. Soc. 36 (1999), no. 1, 75–93. Zbl0916.22008MR1653177
- Griess R.L., Jr., Ryba A.J.E., Quasisimple finite subgroups of exceptional algebraic groups, Journal of Group Theory, 2002, 1–39. MR1879514
- Griess R.L., Jr., Höhn G., Virasoro frames and their stabilizers for the lattice type vertex operator algebra, J. Reine Angew. Math. 561 (2003), 1–37. MR1998606
- Griess R.L., Jr., GNAVOA, I. Studies in groups, nonassociative algebras and vertex operator algbras, Vertex Operator Algebras in Mathematics and Physics (Toronto, 2000), pp. 71–88, Fields Ins. Commun., 39, Amer. Math. Soc., Providence, 2003. MR2029791
- Lam C.H., Construction of vertex operator algebras from commutative associative algebras, Comm. Algebra 24 (1996), no. 14, 4339–4360. Zbl0892.17020MR1421193
- Lam C.H., On VOA associated with special Jordan algebras, Comm. Algebra 27 (1999), no. 4, 1665–1681. Zbl0934.17016MR1679676
- Miyamoto M., Griess algebras and conformal vectors in vertex operator algebras, J. Algebra 179 (1996), no. 2, 523–548. Zbl0964.17021MR1367861
- Meyer W., Neutsch W., Associative subalgebras of the Griess algebra, J. Algebra 158 (1993), no. 1, 1–17. Zbl0789.17002MR1223664
- Norton S., The Monster Algebra: some new formulae, appeared in AMS Contemp. Math. 193 “Moonshine, the Monster and Related Topics” (eds. Chongying Dong and Geoffrey Mason), 1996, pp. 297–306 (Conference at Mount Holyoke, 1994). Zbl0847.11023MR1372728
- Roitman M., On Griess algebras, Symmetry, Integrability and Geometry, Methods and Applications, SIGMA 4 (2008); http://www.emis.de/journals/SIGMA/2008/057/. MR2434941
- Smith S.D., Nonassociative commutative algebras for triple covers of -transposition groups, Michigan Math. J. 24 (1977), 273–287. Zbl0391.20011MR0491931
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.