F-quasigroups isotopic to groups
Tomáš Kepka; Michael K. Kinyon; Jon D. Phillips
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 2, page 267-277
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKepka, Tomáš, Kinyon, Michael K., and Phillips, Jon D.. "F-quasigroups isotopic to groups." Commentationes Mathematicae Universitatis Carolinae 51.2 (2010): 267-277. <http://eudml.org/doc/37759>.
@article{Kepka2010,
abstract = {In Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups, math.GR/0510298, we showed that every loop isotopic to an F-quasigroup is a Moufang loop. Here we characterize, via two simple identities, the class of F-quasigroups which are isotopic to groups. We call these quasigroups FG-quasigroups. We show that FG-quasigroups are linear over groups. We then use this fact to describe their structure. This gives us, for instance, a complete description of the simple FG-quasigroups. Finally, we show an equivalence of equational classes between pointed FG-quasigroups and central generalized modules over a particular ring.},
author = {Kepka, Tomáš, Kinyon, Michael K., Phillips, Jon D.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {F-quasigroup; Moufang loop; generalized modules; F-quasigroups; Moufang loops; loop isotopes; identities; generalized modules},
language = {eng},
number = {2},
pages = {267-277},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {F-quasigroups isotopic to groups},
url = {http://eudml.org/doc/37759},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Kepka, Tomáš
AU - Kinyon, Michael K.
AU - Phillips, Jon D.
TI - F-quasigroups isotopic to groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 2
SP - 267
EP - 277
AB - In Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups, math.GR/0510298, we showed that every loop isotopic to an F-quasigroup is a Moufang loop. Here we characterize, via two simple identities, the class of F-quasigroups which are isotopic to groups. We call these quasigroups FG-quasigroups. We show that FG-quasigroups are linear over groups. We then use this fact to describe their structure. This gives us, for instance, a complete description of the simple FG-quasigroups. Finally, we show an equivalence of equational classes between pointed FG-quasigroups and central generalized modules over a particular ring.
LA - eng
KW - F-quasigroup; Moufang loop; generalized modules; F-quasigroups; Moufang loops; loop isotopes; identities; generalized modules
UR - http://eudml.org/doc/37759
ER -
References
top- Belousov V.D., Florja I.A., On left-distributive quasigroups, Bul. Akad. Štiince RSS Moldoven 1965 (1965), no. 7, 3–13. MR0194541
- Bruck R.H., A Survey of Binary Systems, Springer, 1971. Zbl0141.01401MR0093552
- Golovko I.A., F-quasigroups with idempotent elements, Mat. Issled. 4 (1969), vyp. 2 (12), 137–143. Zbl0235.20065MR0274632
- Kepka T., F-quasigroups isotopic to Moufang loops, Czechoslovak Math. J. 29(104) (1979), no. 1, 62–83. Zbl0444.20067MR0518141
- Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups, math.GR/0510298. Zbl1133.20051
- Kepka T., Kinyon M.K., Phillips J.D., F-quasigroups and generalized modules, math.GR/0512244.
- Murdoch D.C., 10.2307/2371517, Amer. J. Math. 61 (1939), 509–522. Zbl0020.34702MR1507391DOI10.2307/2371517
- Pflugfelder H., Quasigroups and Loops: Introduction, Sigma Series in Pure Math. 8, Helderman, Berlin, 1990. Zbl0715.20043MR1125767
- Sabinina L.L., On the theory of -quasigroups, in Webs and Quasigroups, pp. 127–130, Kalinin. Gos. Univ., Kalinin, 1988. Zbl0681.20044MR0949717
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.